
The Mathematica® Journal

Computing the Uncomputable Rado
Sigma Function
An Automated, Symbolic Induction Prover for Nonhalting Turing
Machines

Joachim Hertel
We discuss a new tool that is successfully used in an ongoing project to
compute SH5L: an automated symbolic induction prover (SIP). The SIP tool
is written in Mathematica and provides a unified way to prove that large
sets of Turing machines are nonhalters. In a way, an SIP enables certain
Turing machines to provide their own proof of being a nonhalter.

‡ Introduction
It is a classic result of computability theory that there exist uncomputable func-
tions. A prime example is Tibor Rado’s [1] function SHnL (or the busy beaver func-
tion) that measures the productivity of n-state, binary Turing machines. Despite
being uncomputable, we know [2] exact values of SHnL for n = 1, 2, 3, 4 and a
high lower bound for n = 5: SH5L ¥ 4098 [3].

To compute the exact value of SHnL we have to decide the halting question for
H4 n + 1L2 n n-state binary Turing machines. Fortunately, this huge number can be
reduced by applying well-known techniques such as tree normalization, back-
tracking, and simple loop detection [2].
With few undecided Turing machines, we now have strong evidence that indeed
SH5L = 4098. Final results will be reported in a forthcoming report [4].

· Rado’s Uncomputable Sigma Function

There are far too many functions from the positive integers to the positive inte-
gers for them all to be (Turing) computable. A Cantor diagonalization argument
[5] shows that the set of all such functions is not enumerable, whereas the set
of all Turing machines is denumerable [5]. Hence, there must exist functions that
are uncomputable.

In 1962, Tibor Rado [1] presented the uncomputable function S (also known as
the busy beaver function). Roughly speaking, S HnL is the largest number of 1s left
on the tape by a halting binary n-state Turing machine when started on an ini-
tially all 0 tape. The S function is uncomputable because otherwise it would solve
the halting problem, which is known to be undecidable [5]. Even more, Rado [1]
proved that S grows faster than any computable function for large enough
values of n, that is, for any computable function f :  Ø , it holds that
$ k0 " k ¥ k0 f HkL < SHkL.

In 1964 Green [6] established general lower bounds for the S function for larger
values of n by explicitly constructing so-called class M Turing machines that gen-
erate long blocks of 1s. Julstrom [7] showed that Green’s class M Turing ma-
chines are related to the Ackermann function [5], a function that is computable
but not primitive recursive.
The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

In 1964 Green [6] established general lower bounds for the S function for larger
values of n by explicitly constructing so-called class M Turing machines that gen-
erate long blocks of 1s. Julstrom [7] showed that Green’s class M Turing ma-
chines are related to the Ackermann function [5], a function that is computable
but not primitive recursive.

Various computationally based approaches to make progress on the S function
have been taken: brute force searches, genetic algorithms, heuristic behavior anal-
ysis, and many more [8]. The S function has become a classic topic in the theory
of computing [8]. For a comprehensive list of references on Rado’s S function,
see [9].
However, so far, exact values of SHnL have only been computed for n = 1, 2, 3, 4
(see [2, 8]): SH1L = 1, SH2L = 4, SH3L = 6, SH4L = 13. These values are the first
elements of the A028444 sequence of integers in The On-Line Encyclopedia
of Integers [10].

In 1990 Marxen and Buntrock [3] established the lower bound SH5L ¥ 4098, by
publishing a record-holding binary 5-state Turing machine that halts after
47,176,870 steps and leaves 4098 1s on the tape.
Michel [11] shows a connection of most of the known low n record-holding Tur-
ing machines and the Collatz 3 x + 1 problem.
There are three other related uncomputable functions associated with binary n-
state Turing machines:

Ë ShiftHnL: The maximum number of moves of a halting binary n-state
Turing machine started on an all 0 tape.

Ë NumHnL: The largest unary number that can be created by a halting
binary n-state Turing machine started on an all 0 tape.

Ë SpaceHnL: The largest number of different tape cells scanned by a halting
binary n-state Turing machine started on an all 0 tape.

Ben-Amram et al. [12] prove that NumHnL § SHnL § SpaceHnL § ShiftHnL, " n.

· Why Compute Values of Sigma?

Chaitin argues that the S function is of considerable meta-mathematical interest.
According to Chaitin [13], let P be a computable predicate of a positive integer n
so that for any specific n it is possible to compute if P HnL is true or false. The
Goldbach conjecture is an example for P. The S function provides a crucial up-
per bound, for if P has algorithmic information content p, it suffices to examine
the first S HpL natural numbers to decide whether P is true or false for all natural
numbers [13]. Hence, the S function enables converting a large but finite num-
ber of calculations into a mathematical proof. Calculating S HnL for specific values
of n thus amounts to a systematic effort to settle all finitely refutable mathemati-
cal conjectures; that is, to determine all constructive mathematical truth [13].

Computing the Uncomputable Rado Sigma Function 271

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

· Minds, Machines, and Sigma

There is an ongoing philosophical discussion as to whether the human mind can
surpass the Turing limit or can be understood as a Turing machine. The famous
logician Kurt Gödel discusses his point of view that the mind can indeed surpass
the Turing limit in conjunction with his well-known incompleteness theorem.
Gödel states in [14], that “although at each stage the number and precision of the
abstract terms at our disposal may be finite, both may converge toward infinity in
the course of the application of the procedure”. Computing values of SHnL for
increasing n serves as a quantitative example for the situation Gödel is referring
to. Indeed, Bringsjord et al. [15] present a “new Gödelian argument for
hypercomputing minds” that is based on the S function. In their argument, the S
function provides a discrete way to measure the achievement of the human mind,
surpassing the Turing limit and establishing new constructive mathematical
truth. In [15] the core assumption is that if the human mind can compute SHnL, it
also can compute SHn + 1L, although that advance might take quite a long time.

Experience from our ongoing project of computing S for 5-state binary Turing
machines shows that the halting question of large subsets of Turing machines
can be decided in a unified way. By using data mining to identify patterns and by
the subsequent use of an SIP, we can prove that these machines are in fact non-
halters once they reach a certain pattern when started on an all 0 tape. If we
succeed in identifying an induction base (i.e., some pattern), we then can use the
SIP to operate as a kind of meta-Turing machine, enabling the underlying
Turing machine to create its own proof of being a nonhalter. Nothing in that
process is restricted to 5-state Turing machines. Hence we can imagine climbing
beyond n = 5. The main challenge becomes the data mining part of identifying
suitable induction base steps for the increasingly complex and “erratic” behavior
of Turing machines.

We now turn in more detail to the computation of SH5L and to our main
computational tool for that task~the SIP for nonhalting Turing machines.

‡ The Computation of Sigma for 5-State, Binary Turing
Machines

· Notations and Definitions

Binary n-state Turing machines conform to these conditions:

Ë The tape is infinite in both directions.

Ë The tape alphabet is S = 80, 1<.

Ë The all 0 tape is called the blank tape W.

Ë The Turing machine has n states, labeled 1, … , n, and a halt state,
labeled 0.

Ë At each step the machine reads/writes the cell scanned by the Turing
head and moves the Turing head one cell to the left/right.

Definition: The instruction table of a 5-state binary Turing machine M is a 5ä2
table such that MHs, hL := 8ws, mv, ns<, with s œ 81, 2, 3, 4, 5<, h œ 80, 1<,
ws œ 80, 1<, mv œ 8L, R<, ns œ 80, 1, 2, 3, 4, 5<.

272 Joachim Hertel

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Definition: The instruction table of a 5-state binary Turing machine M is a 5ä2
table such that MHs, hL := 8ws, mv, ns<, with s œ 81, 2, 3, 4, 5<, h œ 80, 1<,
ws œ 80, 1<, mv œ 8L, R<, ns œ 80, 1, 2, 3, 4, 5<.
We call s the current state of M and h the read symbol in the tape cell positioned
under the Turing head H. The triple 8ws, mv, ns< is called a Turing instruction,
with the write symbol ws being written into the tape cell positioned under the
Turing head H, mv the move direction of the Turing head H, and ns the next
state of M. If ns = 0, M stops; otherwise, it continues executing instructions.
Without loss of generality, we assume the halt instruction to be 81, R, 0<.

That leaves us with H2 µ 2 µ 5 + 1L2µ5 = 2110 possible binary 5-state Turing ma-
chines. We call this finite set 5.

Let M œ 5. MHWL means Turing machine M is started in state 1 on tape W.

We define

sHML :=
k MHWL halts and leaves k 1s on the tape
0 otherwise.

Here is an example of a a 5-state Turing machine first published by Marxen and
Buntrock [3]:

MMB =

81, R, 2< 81, L, 3<
81, R, 3< 81, R, 2<
81, R, 4< 80, L, 5<
81, L, 1< 81, L, 4<
81, R, 0< 80, L, 1<

.

MMBHWL halts after 47,176,870 steps and leaves 4098 1s on the tape; that is,
sIMMBM = 4098:

SH5L := Max
Mœ5

sHML .

Hence, SH5L ¥ 4098 and we have to solve the halting question for a finite, but large
number of Turing machines to compute the value of S H5L.

Configurations
Let S*denote the set of finite words from the alphabet S. For x œ S*and y œ S*

let x || y   denote the concatenated word.

A machine configuration c is an expression

c = 8s, 8w, 88x<, 1<, h, 88 y<, 1<, w<<, s œ 80, 1, 2, 3, 4, 5<, h œ S, x, y œ S*,

where w denotes the left/right infinite blank portion of the tape. In this notation
W = 8w, 0, w<.

Computing the Uncomputable Rado Sigma Function 273

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

We use 88x<, n< := :8x, … , x<
n-times

, 1> for all x œ S* to define symbolic configurations

with multipliers n ¥ 1, as in c = 8s, 8w, 88x<, n<, h, 88 y<, m<, w<<. For example,
c = 83, 8w, 0, 881, 0, 1<, k<, w<<. That is, M is in state 3, the Turing head scans a 0
cell, and the subtape 81, 0, 1< occurs k times.

· General Approach: Discover and Prove

By using well-known techniques [2], such as tree normalization, backtracking, or
simple loop detection, the halting question can be decided for many of the 5-
state binary Turing machines.

If we apply such techniques to the 2110 possible 5-state binary Turing machines,
we find approximately 1,000,000 undecided machines (holdouts).
For each of the remaining undecided Turing machines:

Ë Iterate the holdout machine a “number of times”, starting on the blank
tape W.

Ë Save the configuration after each step.
Ë Try to discover recurring patterns and store them as machine

configurations.
Here are some examples with x, y œ S* and the multiplier pn satisfying a recur-
rence relation pn+1 = a pn + b:

cL HnL := 8s, 8w, h, 88x<, a n + b<, w<<,
cR HnL := 8s, 8w, 88x<, a n + b<, h, w<<,
cL HnL := 8s, 8w, h, 88x<, 1<, 88 y<, pn<, w<<,
cR HnL := 8s, 8w, 88x<, 1<, 88 y<, pn<, h, w<<,

where n ¥ 0.
Here are some actual examples of configurations.

A simple linear configuration:

c HnL = 82, 8w, 0, 881<, 4 n<<, w<.

A simple exponential configuration:

cHnL = 81, 8w, 1, 880<, 3n<, 881<, 3<, w<<.

A more complicated configuration:

cHnL = 91, 9w, 0, 980, 0, 1<, 22 n+1=, 880, 1<, 3<, 980, 0, 1<, 22 n-1=, 880, 1<, 3<,
… , 980, 0, 1<, 23=, 880, 1<, 3<, 980, 0, 1<, 21=, 880, 1<, 3<, w==.

Once we have identified a reliable hypothesis for a recurring configuration c HnL
of a Turing machine M, we try to create an induction proof showing that M
does indeed not halt.
The general scheme is as follows:

Step 1: Establish the induction proposition: M : Wï c HnL, " n ¥ 0 (i.e., M
transforms the blank tape into c HnL in a countable number of steps).

274 Joachim Hertel

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Step 2: Verify the base case; that is, check that M : Wï c HnL, n = 0 (or
any finite number n).
Step 3: Formulate the induction hypothesis; that is, assume that
M : Wï c HkL, " 0 § k § n.
Step 4: Prove the induction step; that is, M : Wï c Hn + 1L, or equivalently
M : c HnLï c Hn + 1L.

If the induction proof is successful, we know that the Turing machine M does
not halt; hence, s HML = 0. The induction proof might fail because of the
following.

Ë The hypothesis is wrong (it is just based on a finite amount of tape data).
Ë The proof does not terminate within the prespecified amount of CPU

time (i.e., it might go through if we allow more CPU time).
Ë A situation is encountered beyond the implemented induction logic (we

need to enhance the prover).
Ë A generalized Collatz (3 x + 1) problem is encountered (see below).

We now turn to a more detailed discussion of the SIP.

‡ The Symbolic Induction Prover
· Meta-Instructions

The underlying idea is a unified and simple principle: analyze the Turing machine’s
instruction table and extract rules which describe meta-transactions on maximal in-
variant subtapes.

For example, let

M =

s ê h 0 1
1 * *

2 H0, R, 5L *

3 H1, L, 3L *

4 * *

5 * H0, R, 2L

Here is an example of a first-order meta-instruction:

83, 8gl, 880<, n<, 0, gr<< Ø 83, 8gl, 0, 881<, n<, gr<< " n ¥ 1,

where gl is the symbol for a general left tape and gr is the symbol for a general
right tape.
If at time t, M has configuration

Computing the Uncomputable Rado Sigma Function 275

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Step 4 involves the handling of symbolic configurations. This cannot be done by
using the Turing machine’s instruction table as it is, because the Turing
instructions are defined for numeric tape configurations only, not for symbolic
configurations. For this we need the SIP, a kind of meta-interpreter that enables
the Turing machine to produce its own induction proof of being a nonhalter.

If at time t, M has configuration

ctHnL = 83, 8w, 88x<, 1<, 880<, n<, 0, 88 y<, 1<, w<<

for some x, y œ S*, we can apply the meta-instruction to get

ct+1HnL = 83, 8w, 88x<, 1<, 0, 881<, n<, 88 y<, 1<, w<<.

Here is an example of a second-order meta-instruction:

82, 8gl, 0, 881, 0<, n<, gr<< Ø 82, 8gl, 880<, 2 n<, 0, gr<< " n ¥ 1.

Note that a meta-instruction modifies an arbitrarily large countable portion of
the tape.

Induction Schemes
The SIP has a built-in library to support several induction proof schemes. Induc-
tion schemes are used in conjunction with meta-instructions to produce an induc-
tion proof for a nonhalting Turing machine. If necessary, the library can be en-
hanced with new induction schemes. We now discuss some of the implemented
schemes.

Scheme: Commutation Relations at the Tape Boundary
Assume Turing machine M exhibits the symbolic machine configuration

cHkL = 8s, 8w, h, 8x, k<, 8q, 1<, w<<

for some x, q  .

Verify: M : Wï c HkL for k = 0.

Assume: M : c Hk - 1Lï c HkL.

Prove by Induction: M : c HkLï c Hk + 1L.

If true, M does not halt; hence, s HML = 0.

Induction Proof:
Let M be in the configuration

cHkL = 8s, 8w, h, 8x, k<, 8q, 1<, w<<.

The SIP searches for maximal invariant boundary conditions and commutation
relations.
Check If :

M : 8s, 8w, h, 8x, 0<, 8qè, 1<, gr<<ï 8s, 8w, h, 8x, 1<, 8qè, 1<, gr<<,
for some qè œ S*, such that qè is a prefix of q.

If true, check further if x »» qè = qè »» xè for some xè œ S*; if this is also true, modify
the induction assumption to read:
Extended Induction Hypothesis:

M : 8s, 8w, h, 8x, k - 1<, 8qè, 1<, gr<<ï 8s, 8w, h, 8x, k<, 8qè, 1<, gr<<.

276 Joachim Hertel

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

The SIP proves this extended induction assumption as follows:

8s, 8w, h, 8x, k<, 8qè, 1<, gr<<

8s, 8w, h, 8x, k - 1<, 8x, 1<, 8qè, 1<, gr<<

8s, 8w, h, 8x, k - 1<, 8qè, 1<, 8xè , 1<, gr<< Husing the commutation relationL

8s, 8w, h, 8x, k<, 8qè, 1<, 8xè , 1<, gr<< Husing the extended induction hypothesis
for Hk - 1L # HkL on any grL

8s, 8w, h, 8x, k<, 8x, 1<, 8qè, 1<, gr<< Husing the commutation relationL

8s, 8w, h, 8x, k + 1<, 8qè, 1<, gr<<‡

Hence M : c HkLï c Hk + 1L, " k ¥ 0 and M does not halt, meaning that s HML = 0.

Scheme: Cyclic Conditions at the Tape Boundary
Assume Turing machine M exhibits the symbolic machine configuration

cHkL = 8s, 8w, h, 8x, k<, 8q, 1<, w<<,

for some x, q  .

Induction Base:
Verify M : 8s, 8w, h, 8x, 1<, gr<<ïM : 8s, 8w, 8 y, 1<, h, gr<<.

Induction Assumption:
M : 8s, 8w, h, 8x, j<, gr<<ïM : 8s, 8w, 8 y, j<, h, gr<<, " j such that 1 § j § k - 1.

Assume further that the instruction table of M results in meta-instructions:

M1 : 8s, 8w, 8 y, n<, h, 8ci, 1<, gr<<ö 8s, 8w, h, 8x, n<, 8ci+1, 1<, gr<<, y, c0, … , cm œ S*

M2 : 8s, 8w , 8 y, n<, h, 8cm, 1<, gr<<ö 8s, 8w, 8 y, n + 1<, h, gr<<,

where c0, … , cm are the cyclic boundary conditions, with c0 = 8<.

Computing the Uncomputable Rado Sigma Function 277

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Induction Proof:

8s, 8w, h, 8x, k<, 8q, 1<, w<<
8s, 88w, h, 8x, k - 1<, 8x, 1<, 8q, 1<, w<<
8s, 88w, h, 8x, k - 1<, gr<< Hreplacing 88x, 1<, 8q, 1<, w< by grL

8s, 8w, 8 y, k - 1<, h, gr<< Hfirst use of induction hypothesisL
8s, 8w, h, 8x, k - 1<, 8c1, 1<, gr<< Husing meta-instruction M1L
8s, 8w, 8 y, k - 1<, h, 8c1, 1<, gr<< Hsecond use of induction hypothesisL
8s, 8w, h, 8x, k - 1<, 8c2, 1<, gr<< Husing meta-instruction M1L
ª

8s, 8w, 8 y, k - 1<, h, 8cm-1, 1<, gr<< IHm - 1Lth use of induction hypothesisM
8s, 8w, h, 8x, k - 1<, 8cm, 1<, gr<< Husing meta-instruction M1L
8s, 8w, 8 y, k<, h, gr<< Huse of induction hypothesis and use of M2L
8s, 8w, h, 8x, k<, 8c1, 1<, gr<< Husing meta-instructionL
8s, 8w, h, 8x, k<, 8c1, 1< 88x, 1<,

8q, 1<, w<<
Hsubstituting back the

explicit right tape portionL

8s, 8w, h, 8x, k + 1<, 8p, 1< 8q, 1<, w<< Hthis step might vary in other casesL

8s, 8w, h, 8x, k + 1<, 8q, 1< 80, p<, w<< for some p > 0
8s, 8w, h, 8x, k + 1<, 8q, 1<, w<< Hsubsuming the finite 0s intowL‡

Scheme: Decreasing Cell Sequence at the Tape Boundary
Assume Turing machine M exhibits:

8s, 8w, h, 88A<, n<, 88B<, 1<, 88R<, k<, gr<< k ¥ 0, an integer
ª

8s, 8w, h, 88A<, n<, 88B<, 2<, 88R<, k - 1<, gr<<
ª

8s, 8w, h, 88A<, n<, 88B<, j<, 88R<, k - j<, gr<<

Induction Base:
Verify that for some function f :

M : 8s, 8w, h, 88A<, n<, 88B<, 1<, 88R<, 1<, gr<<ö
8s, 8w, h, 88A<, n + f H1L<, 88B<, 2<, gr<<

Verify the swap meta-instruction:

8s, 8w, h, 88A<, n<, 88B<, k<, 88R<, 1<, gr<<ö
8s, 8w, h, 88A<, n + k0<, 88B<, 1<, 88R<, k - 1<, 88B<, 1<, gr<<

278 Joachim Hertel

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Induction Assumption:

M : 8s, 8w, h, 88A<, n<, 88B<, k - 1<, 88R<, 1<, gr<<ö
8s, 8w, h, 88A<, n + f Hk - 1L<, 88B<, k<, gr<<, for some function f

Induction Proof:

8s, 8w, h, 88A<, n<, 88B<, k<, 88R<, 1<, gr<<

8s, 8w, h, 88A<, n + k0<, 88B<, 1<,
88R<, k - 1<, 88B<, 1<, gr<<

Happly swap meta-instructionL

:s, :w, h, :8A<, n + k0 +‚
i=1

k-1
f HiL>,

88B<, k<, 88R<, 0<, 88B<, 1<, gr>>

Happly the induction assumption
k - 1 timesL

:s, :w, h, :8A<, n + k0 +‚
i=1

k-1
f HiL>,

88B<, k + 1<, gr>>

Now, require that

k0 +‚
i=1

k-1

f HiL = f HkL

and hence f HkL = k0 2k.

Similar schema are also supported:

8s, 8w, 88A<, n<, 88B<, k<, h, 88R<, 1<, gr<<

8s, 8w, 88A<, n + k0<, 88B<, 1<, h, 88R<, k - 1<,
88X <, 1<, gr<<

Happly swap meta-instructionL

and

8s, 8w, 88A<, n<, h, 88B<, k<, 88R<, 1<, gr<<

8s, 8w, 88A<, n + k0<, h, 88B<, 1<, 88R<, k - 1<,
88X <, 1<, gr<<

Happly swap meta-instructionL

Modular Arithmetic
Often meta-instructions are subject to some modular condition.

Computing the Uncomputable Rado Sigma Function 279

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Here is an example:

M : 8s, 8gl, 81, n<, h, gr<<ö

s, gl, 881<, Mod@n, 3D<, h, 80, 1, 0<, 3 Floor
n

3
, gr

If possible, the SIP calculates Mod@n, pD explicitly by using information about n.

If the variable is of the form 2 n + 1 and p = 2, then Mod@2 n + 1, 2D = 1.

In general, the SIP uses modular arithmetic in the finite ring n, including
Fermat’s little theorem:

 Mod@ap, pD = a, " a œ Integers, " p œ Primes

and Euler’s generalization:

ModAajHnL, nE = 1, " a, n œ Integers.

(Euler’s phi function jHnL gives the number of positive integers less than or equal
to n that are relatively prime to n.)

If nothing specific can be computed, the SIP picks a value v œ 80, … , p - 1< and
generates p subproofs, one for each of the possible v values at each decision point
in the general induction proof.

· The Symbolic Induction Prover Package

The SIP includes the following major functional packages to support meta-in-
structions and symbolic induction proofs for Turing machine configurations.

metaservices creates rules that represent meta-instructions

swapservices handles all orders of meta-instructions

shiftservices shifts configurations into normal
form to make them comparable

Create and execute meta-instructions.

inductionservices the main package for
induction proof schemes

tracebufferservices detects emerging schemes by
tracing the steps of an induction proof,
producing induction assumptions,
and invokes the SIP recursively for proof

Handling of induction proofs.

getgaugedvarservice handles modulo
arithmetic for symbolic variables

280 Joachim Hertel

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

getgaugedvarservice handles modulo
arithmetic for symbolic variables

Modulo arithmetic for symbolic variables.

extremepointservices handles logic associated with
maximal invariant tape boundaries

Handling boundary conditions.

semaphoresupport provides services to serialize induction
schemes to prevent “vicious circles”

environmentservices specifies the proof environment
He.g., global parameters, etc.L

Technical services.

· Results

Start with 5, cardI5M = 2110.

Applying well-known [2] and fast techniques, such as tree normal form, back-
tracking, and simple loop detection, leaves about 1,000,000 Turing machines
undecided.

Ë 850,000 Turing machines are of a linear type, for example,
8s, 8w, h, 8x, a n + b<, w<< for some x œ S*, or slightly more complex
and are proved by the SIP to not halt.

Ë 143,000 Turing machines are of polynomial or exponential configura-
tions and are proved by the SIP to not halt.

Ë 1,000 Turing machines are currently too complex for the SIP.

Ë 900 have been manually proven to not halt.

Ë 100 cases are still holdouts and are currently under consideration,
but there is strong evidence that they do not halt.

Ë 6,000 Turing machines halt within 50 × 106 steps.

Computing the Uncomputable Rado Sigma Function 281

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

Given that, we find that for the number of 1s (S) left on the tape, the number
of cells scanned (Space), and the number of moves (Shift), the Marxen and
Buntrock [3] machine is the champion

81, R, 2< 81, L, 3<
81, R, 3< 81, R, 2<
81, R, 4< 80, L, 5<
81, L, 1< 81, L, 4<
81, R, 0< 80, L, 1<

with:

SH5L = 4098
ShiftH5L = 47,176,870
SpaceH5L = 12,289.

The largest unary number (i.e., empty tape with a single block of consecutive 1s)
produced by any halting binary 5-state Turing machine is NumH5L = 165.
The Num champion is:

81, R, 2< 81, L, 1<
81, R, 3< 81, L, 5<
81, R, 4< 81, R, 5<
80, L, 1< 81, R, 3<
81, R, 0< 80, L, 2<

The possibility exists that the halting question for one or more of the remaining
holdouts is linked to the Collatz 3 x + 1 problem (see also [11]). This is currently
under investigation, and the final results will be reported in a forthcoming paper
[4].

‡ References
[1] T. Rado, “On Non-Computable Functions,” Bell System Technical Journal, 41, 1962

pp. 877|884.

[2] R. Machlin and Q. Strout, “The Complex Behavior of Simple Machines,” Physica D:
Nonlinear Phenomena, 42, 1990 pp. 85|98, and references therein.
www.eecs.umich.edu/~qstout/abs/busyb.html

[3] H. Marxen and J. Buntrock, “Attacking the Busy Beaver 5,” Bulletin of the European
Association for Theoretical Computer Science, 40, 1990 pp. 247|251.

[4] J. Hertel, “The Computation of the Value of Rado’s Non-Computable S Function for
5-State Turing Machines,” work in progress.

[5] G. S. Boolos and R. C. Jeffrey, Computability and Logic, New York: Cambridge University
Press, 1989.

[6] M. W. Green, “A Lower Bound on Rado’s Sigma Function for Binary Turing Machines,”
in Proceedings of the Fifth IEEE Annual Symposium on Switching Circuit Theory and
Logical Design, Princeton, NJ, 1964 pp. 91|94.

[7] B. A. Julstrom, “A Bound on the Shift Function in Terms of the Busy Beaver Function,”
ACM Special Interest Group on Algorithms and Computation Theory, 23(3), 1992
pp. 100|106.

282 Joachim Hertel

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

[8] E. W. Weisstein, “Busy Beaver” from Wolfram MathWorld~A Wolfram Web Resource.
mathworld.wolfram.com/BusyBeaver.html

[9] H. J. M. Wijers, “Bibliography on the Busy Beaver Problem,” 2004.
www.win.tue.nl/~wijers/bbbibl.pdf

[10] N. J. A. Sloane. “The On-Line Encyclopedia of Integer Sequences, Sequence
Id=A028444.”
oeis.org/search?q=A028444&language=english&go=Search

[11] P. Michel, “Busy Beaver Competition and Collatz-Like Problems,” Archive for Mathemati-
cal Logic, 32(5), 1993 pp. 351|367.

[12] A. M. Ben-Amrein, B. A. Julstrom, and K. Zwick, “A Note on Busy Beavers and Other
Creatures,” Mathematical Systems Theory, 29(4), 1996 pp. 375|386.

[13] G. J. Chaitin, “Computing the Busy Beaver Function,” Open Problems in Communication
and Computation (T. M. Cover and B. Gopinath, eds.), New York: Springer-Verlag, 1987
pp. 108|112.

[14] K. Gödel, “Some Remarks on the Undecidability Results,” Collected Works Volume II,
Publications 1938|1974(S. Fefferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, and R.
M. Soloway, eds.), New York: Oxford University Press, 1972/1990 pp. 305|306.

Computing the Uncomputable Rado Sigma Function 283

The Mathematica Journal 11:2 © 2009 Wolfram Media, Inc.

[15] S. Bringsjord, O. Kellett, A. Shilliday, J. Taylor, Bram van Heuvein, Y. Yang, J. Baumes,
and K. Ross, “A New Gödelian Argument for Hypercomputing Minds Based on the Busy
Beaver Problem,” Applied Mathematics and Computation, 176(2), 2006 pp. 516–530.
DOI Link: dx.doi.org/10.1016/j.amc.2005.09.071

J. Hertel, “Computing the Uncomputable Rado Sigma Function,” The Mathematica Journal,
2011. dx.doi.org/doi:10.3888/tmj.11.3–8.

About the Author
Joachim Hertel’s main area of research includes quantum computation and the theory of
computability. Hertel’s special interest is in the general topic “Minds and Machines”, par-
ticularly the question of what role Rado’s S function and Chaitin’s W number play in this
context.

Joachim Hertel
50 Main St, STE 1000
White Plains, NY,10606
jhertel@h-star.com

Joachim Hertel

