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Computing the Uncomputable Rado 
Sigma Function
An Automated, Symbolic Induction Prover for Nonhalting Turing 
Machines

Joachim Hertel
We  discuss  a  new  tool  that  is  successfully  used  in  an  ongoing  project  to
compute SH5L: an automated symbolic induction prover (SIP). The SIP tool
is  written  in  Mathematica  and  provides  a  unified  way  to  prove  that  large
sets  of  Turing  machines  are  nonhalters.  In  a  way,  an  SIP  enables  certain
Turing machines to provide their own proof of being a nonhalter. 

‡ Introduction
It  is  a  classic  result  of  computability  theory that  there exist  uncomputable func-
tions. A prime example is Tibor Rado’s [1] function SHnL (or the busy beaver func-
tion) that measures the productivity of n-state, binary Turing machines. Despite
being  uncomputable,  we  know  [2]  exact  values  of  SHnL  for  n = 1, 2, 3, 4  and  a
high lower bound for n = 5: SH5L ¥ 4098 [3].

To  compute  the  exact  value  of  SHnL  we  have  to  decide  the  halting  question  for
H4 n + 1L2 n n-state binary Turing machines. Fortunately, this huge number can be
reduced  by  applying  well-known  techniques  such  as  tree  normalization,  back-
tracking, and simple loop detection [2]. 
With few undecided Turing machines, we now have strong evidence that indeed
SH5L = 4098. Final results will be reported in a forthcoming report [4].

· Rado’s Uncomputable Sigma Function

There are far too many functions from the positive integers to the positive inte-
gers for them all to be (Turing) computable. A Cantor diagonalization argument
[5]  shows  that  the  set  of  all  such  functions  is  not  enumerable,  whereas  the  set
of all Turing machines is denumerable [5]. Hence, there must exist functions that
are uncomputable.

In 1962, Tibor Rado [1] presented the uncomputable function S  (also known as
the busy beaver function). Roughly speaking, S HnL is the largest number of 1s left
on the tape by a  halting binary n-state Turing machine when started on an ini-
tially all 0 tape. The S function is uncomputable because otherwise it would solve
the halting problem, which is known to be undecidable [5]. Even more, Rado [1]
proved  that  S  grows  faster  than  any  computable  function  for  large  enough
values  of  n,  that  is,  for  any  computable  function  f :  Ø ,  it  holds  that
$ k0 " k ¥ k0 f HkL < SHkL.

In 1964 Green [6] established general lower bounds for the S function for larger
values of n by explicitly constructing so-called class M Turing machines that gen-
erate  long  blocks  of  1s.  Julstrom  [7]  showed  that  Green’s  class  M  Turing  ma-
chines  are  related to  the  Ackermann function [5],  a  function that  is  computable
but not primitive recursive.
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In 1964 Green [6] established general lower bounds for the S function for larger
values of n by explicitly constructing so-called class M Turing machines that gen-
erate  long  blocks  of  1s.  Julstrom  [7]  showed  that  Green’s  class  M  Turing  ma-
chines  are  related to  the  Ackermann function [5],  a  function that  is  computable
but not primitive recursive.

Various  computationally  based  approaches  to  make  progress  on  the  S  function
have been taken: brute force searches, genetic algorithms, heuristic behavior anal-
ysis, and many more [8]. The S function has become a classic topic in the theory
of  computing  [8].  For  a  comprehensive  list  of  references  on  Rado’s  S  function,
see [9].
However, so far, exact values of SHnL  have only been computed for n = 1, 2, 3, 4
(see  [2,  8]):  SH1L = 1,  SH2L = 4,  SH3L = 6,  SH4L = 13.  These  values  are  the  first
elements  of  the  A028444  sequence  of  integers  in  The  On-Line  Encyclopedia
of Integers [10].

In  1990  Marxen  and  Buntrock  [3]  established  the  lower  bound  SH5L ¥ 4098,  by
publishing  a  record-holding  binary  5-state  Turing  machine  that  halts  after
47,176,870 steps and leaves 4098 1s on the tape.
Michel [11] shows a connection of most of the known low n record-holding Tur-
ing machines and the Collatz 3 x + 1 problem.
There are three other related uncomputable  functions associated with binary n-
state Turing machines:

Ë ShiftHnL:  The  maximum  number  of  moves  of  a  halting  binary  n-state
Turing machine started on an all 0 tape.

Ë NumHnL:  The  largest  unary  number  that  can  be  created  by  a  halting
binary n-state Turing machine started on an all 0 tape.

Ë SpaceHnL: The largest number of different tape cells scanned by a halting
binary n-state Turing machine started on an all 0 tape.

Ben-Amram et al. [12] prove that NumHnL § SHnL § SpaceHnL § ShiftHnL, " n.

· Why Compute Values of Sigma?

Chaitin argues that the S function is of considerable meta-mathematical interest.
According to Chaitin [13], let P be a computable predicate of a positive integer n
so  that  for  any  specific  n  it  is  possible  to  compute  if  P HnL  is  true  or  false.  The
Goldbach conjecture is  an example for P.  The S  function provides a crucial  up-
per bound, for if P  has algorithmic information content p,  it suffices to examine
the first S HpL natural numbers to decide whether P  is true or false for all natural
numbers [13].  Hence,  the S  function enables  converting a  large but  finite  num-
ber of calculations into a mathematical proof. Calculating S HnL for specific values
of n thus amounts to a systematic effort to settle all finitely refutable mathemati-
cal conjectures; that is, to determine all constructive mathematical truth [13].
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· Minds, Machines, and Sigma

There is an ongoing philosophical discussion as to whether the human mind can
surpass the Turing limit or can be understood as a Turing machine. The famous
logician Kurt Gödel discusses his point of view that the mind can indeed surpass
the  Turing  limit  in  conjunction  with  his  well-known  incompleteness  theorem.
Gödel states in [14], that “although at each stage the number and precision of the
abstract terms at our disposal may be finite, both may converge toward infinity in
the  course  of  the  application  of  the  procedure”.  Computing  values  of  SHnL  for
increasing n  serves as a quantitative example for the situation Gödel is  referring
to.  Indeed,  Bringsjord  et  al.  [15]  present  a  “new  Gödelian  argument  for
hypercomputing minds” that is based on the S function. In their argument, the S
function provides a discrete way to measure the achievement of the human mind,
surpassing  the  Turing  limit  and  establishing  new  constructive  mathematical
truth. In [15] the core assumption is that if the human mind can compute SHnL, it
also can compute SHn + 1L, although that advance might take quite a long time. 

Experience  from our  ongoing project  of  computing S  for  5-state  binary  Turing
machines  shows  that  the  halting  question  of  large  subsets  of  Turing  machines
can be decided in a unified way. By using data mining to identify patterns and by
the subsequent use of an SIP, we can prove that these machines are in fact non-
halters  once  they  reach  a  certain  pattern  when  started  on  an  all  0  tape.  If  we
succeed in identifying an induction base (i.e., some pattern), we then can use the
SIP  to  operate  as  a  kind  of  meta-Turing  machine,  enabling  the  underlying
Turing  machine  to  create  its  own  proof  of  being  a  nonhalter.  Nothing  in  that
process is restricted to 5-state Turing machines. Hence we can imagine climbing
beyond n = 5.  The main  challenge  becomes  the  data  mining  part  of  identifying
suitable induction base steps for the increasingly complex and “erratic” behavior
of Turing machines.

We  now  turn  in  more  detail  to  the  computation  of  SH5L  and  to  our  main
computational tool for that task~the SIP for nonhalting Turing machines. 

‡ The Computation of Sigma for 5-State, Binary Turing 
Machines

· Notations and Definitions 

Binary n-state Turing machines conform to these conditions:

Ë The tape is infinite in both directions.

Ë The tape alphabet is S = 80, 1<.

Ë The all 0 tape is called the blank tape W.

Ë The  Turing  machine  has  n  states,  labeled  1, … , n,  and  a  halt  state,
labeled 0. 

Ë At  each  step  the  machine  reads/writes  the  cell  scanned  by  the  Turing
head and moves the Turing head one cell to the left/right.

Definition: The instruction table of a 5-state binary Turing machine M  is a 5ä2
table  such  that  MHs, hL := 8ws, mv, ns<,  with  s œ 81, 2, 3, 4, 5<,  h œ 80, 1<,
ws œ 80, 1<, mv œ 8L, R<, ns œ 80, 1, 2, 3, 4, 5<.
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Definition: The instruction table of a 5-state binary Turing machine M  is a 5ä2
table  such  that  MHs, hL := 8ws, mv, ns<,  with  s œ 81, 2, 3, 4, 5<,  h œ 80, 1<,
ws œ 80, 1<, mv œ 8L, R<, ns œ 80, 1, 2, 3, 4, 5<.
We call s the current state of M  and h the read symbol in the tape cell positioned
under the Turing head H. The triple 8ws, mv, ns< is called a Turing instruction,
with  the  write  symbol  ws  being  written  into  the  tape  cell  positioned  under  the
Turing  head  H,  mv  the  move  direction  of  the  Turing  head  H,  and  ns  the  next
state of M. If ns = 0, M stops; otherwise, it continues executing instructions.
Without loss of generality, we assume the halt instruction to be 81, R, 0<. 

That  leaves  us  with  H2 µ 2 µ 5 + 1L2µ5 = 2110  possible  binary  5-state  Turing  ma-
chines. We call this finite set 5.

Let M œ 5. MHWL means Turing machine M is started in state 1 on tape W.

We define

sHML :=
k MHWL halts and leaves k 1s on the tape
0 otherwise.

Here is an example of a a 5-state Turing machine first published by Marxen and
Buntrock [3]:

MMB =

81, R, 2< 81, L, 3<
81, R, 3< 81, R, 2<
81, R, 4< 80, L, 5<
81, L, 1< 81, L, 4<
81, R, 0< 80, L, 1<

.

MMBHWL  halts  after  47,176,870  steps  and  leaves  4098  1s  on  the  tape;  that  is,
sIMMBM = 4098:

SH5L := Max
Mœ5

sHML .

Hence,  SH5L ¥ 4098 and we have  to  solve  the  halting  question  for  a  finite,  but  large
number of Turing machines to compute the value of S H5L.

Configurations
Let  S*denote  the set  of  finite  words  from the alphabet  S.  For  x œ S*and y œ S*

let x || y   denote the concatenated word.

A machine configuration c is an expression

c = 8s, 8w, 88x<, 1<, h, 88 y<, 1<, w<<, s œ 80, 1, 2, 3, 4, 5<, h œ S, x, y œ S*,

where w denotes the left/right infinite blank portion of the tape. In this notation
W = 8w, 0, w<.
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We use 88x<, n< := :8x, … , x<
n-times

, 1>  for all x œ S*  to define symbolic configurations

with  multipliers  n ¥ 1,  as  in  c = 8s, 8w, 88x<, n<, h, 88 y<, m<, w<<.  For  example,
c = 83, 8w, 0, 881, 0, 1<, k<, w<<. That is, M  is in state 3, the Turing head scans a 0
cell, and the subtape 81, 0, 1< occurs k times. 

· General Approach: Discover and Prove

By using well-known techniques [2], such as tree normalization, backtracking, or
simple  loop  detection,  the  halting  question  can  be  decided  for  many  of  the  5-
state binary Turing machines. 

If we apply such techniques to the 2110  possible 5-state binary Turing machines,
we find approximately 1,000,000 undecided machines (holdouts). 
For each of the remaining undecided Turing machines: 

Ë Iterate the holdout machine a “number of times”, starting on the blank
tape W.

Ë Save the configuration after each step.
Ë Try  to  discover  recurring  patterns  and  store  them  as  machine

configurations. 
Here are  some examples  with x, y œ S*  and the multiplier  pn  satisfying a  recur-
rence relation pn+1 = a pn + b:

cL HnL := 8s, 8w, h, 88x<, a n + b<, w<<,
cR HnL := 8s, 8w, 88x<, a n + b<, h, w<<,
cL HnL := 8s, 8w, h, 88x<, 1<, 88 y<, pn<, w<<,
cR HnL := 8s, 8w, 88x<, 1<, 88 y<, pn<, h, w<<,

where n ¥ 0.
Here are some actual examples of configurations. 

A simple linear configuration: 

c HnL = 82, 8w, 0, 881<, 4 n<<, w<.

A simple exponential configuration: 

cHnL = 81, 8w, 1, 880<, 3n<, 881<, 3<, w<<.

A more complicated configuration:

cHnL = 91, 9w, 0, 980, 0, 1<, 22 n+1=, 880, 1<, 3<, 980, 0, 1<, 22 n-1=, 880, 1<, 3<,
… , 980, 0, 1<, 23=, 880, 1<, 3<, 980, 0, 1<, 21=, 880, 1<, 3<, w==.

Once we have  identified  a  reliable  hypothesis  for  a  recurring configuration c HnL
of  a  Turing  machine  M,  we  try  to  create  an  induction  proof  showing  that  M
does indeed not halt.
The general scheme is as follows:

Step 1: Establish the induction proposition: M : Wï c HnL, " n ¥ 0 (i.e., M
transforms the blank tape into c HnL in a countable number of steps). 
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Step  2:  Verify  the  base  case;  that  is,  check  that  M : Wï c HnL,  n = 0  (or
any finite number n). 
Step  3:  Formulate  the  induction  hypothesis;  that  is,  assume  that
M : Wï c HkL, " 0 § k § n.
Step 4: Prove the induction step; that is, M : Wï c Hn + 1L, or equivalently
M : c HnLï c Hn + 1L.

If  the  induction  proof  is  successful,  we  know  that  the  Turing  machine  M  does
not  halt;  hence,  s HML = 0.  The  induction  proof  might  fail  because  of  the
following.

Ë The hypothesis is wrong (it is just based on a finite amount of tape data).
Ë The proof  does  not  terminate  within  the  prespecified  amount  of  CPU

time (i.e., it might go through if we allow more CPU time).
Ë A situation is encountered beyond the implemented induction logic (we

need to enhance the prover).
Ë A generalized Collatz (3 x + 1) problem is encountered (see below). 

We now turn to a more detailed discussion of the SIP.

‡ The Symbolic Induction Prover
· Meta-Instructions

The underlying idea is  a  unified and simple principle:  analyze the Turing machine’s
instruction  table  and  extract  rules  which  describe  meta-transactions  on  maximal  in-
variant subtapes.

For example, let

M =

s ê h 0 1
1 * *

2 H0, R, 5L *

3 H1, L, 3L *

4 * *

5 * H0, R, 2L

Here is an example of a first-order meta-instruction:

83, 8gl, 880<, n<, 0, gr<< Ø 83, 8gl, 0, 881<, n<, gr<< " n ¥ 1,

where gl is  the symbol for a general left  tape and gr is  the symbol for a general
right tape. 
If at time t, M has configuration
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Step 4 involves the handling of symbolic configurations. This cannot be done by
using  the  Turing  machine’s  instruction  table  as  it  is,  because  the  Turing
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configurations. For this we need the SIP, a kind of meta-interpreter that enables
the Turing machine to produce its own induction proof of being a nonhalter. 



If at time t, M has configuration

ctHnL = 83, 8w, 88x<, 1<, 880<, n<, 0, 88 y<, 1<, w<<

for some x, y œ S*, we can apply the meta-instruction to get

ct+1HnL = 83, 8w, 88x<, 1<, 0, 881<, n<, 88 y<, 1<, w<<.

Here is an example of a second-order meta-instruction:

82, 8gl, 0, 881, 0<, n<, gr<< Ø 82, 8gl, 880<, 2 n<, 0, gr<< " n ¥ 1.

Note  that  a  meta-instruction  modifies  an  arbitrarily  large  countable  portion  of
the tape.

Induction Schemes
The SIP has a built-in library to support several induction proof schemes. Induc-
tion schemes are used in conjunction with meta-instructions to produce an induc-
tion proof for a nonhalting Turing machine. If necessary, the library can be en-
hanced with new induction schemes.  We now discuss  some of  the implemented
schemes.

Scheme: Commutation Relations at the Tape Boundary
Assume Turing machine M exhibits the symbolic machine configuration

cHkL = 8s, 8w, h, 8x, k<, 8q, 1<, w<<

for some x, q  .

Verify: M : Wï c HkL for k = 0.

Assume: M : c Hk - 1Lï c HkL.

Prove by Induction: M : c HkLï c Hk + 1L.

If true, M does not halt; hence, s HML = 0.

Induction Proof:
Let M be in the configuration 

cHkL = 8s, 8w, h, 8x, k<, 8q, 1<, w<<.

The  SIP  searches  for  maximal  invariant  boundary  conditions  and  commutation
relations.
Check If :

M : 8s, 8w, h, 8x, 0<, 8qè, 1<, gr<<ï 8s, 8w, h, 8x, 1<, 8qè, 1<, gr<<,
for some qè œ S*, such that qè is a prefix of q.

If  true,  check  further  if  x »» qè = qè »» xè  for  some xè œ S*;  if  this  is  also  true,  modify
the induction assumption to read: 
Extended Induction Hypothesis:

M : 8s, 8w, h, 8x, k - 1<, 8qè, 1<, gr<<ï 8s, 8w, h, 8x, k<, 8qè, 1<, gr<<.
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The SIP proves this extended induction assumption as follows:

8s, 8w, h, 8x, k<, 8qè, 1<, gr<<

8s, 8w, h, 8x, k - 1<, 8x, 1<, 8qè, 1<, gr<<

8s, 8w, h, 8x, k - 1<, 8qè, 1<, 8xè , 1<, gr<< Husing the commutation relationL

8s, 8w, h, 8x, k<, 8qè, 1<, 8xè , 1<, gr<< Husing the extended induction hypothesis
for Hk - 1L # HkL on any grL

8s, 8w, h, 8x, k<, 8x, 1<, 8qè, 1<, gr<< Husing the commutation relationL

8s, 8w, h, 8x, k + 1<, 8qè, 1<, gr<<‡

Hence M : c HkLï c Hk + 1L, " k ¥ 0 and M does not halt, meaning that s HML = 0.

Scheme: Cyclic Conditions at the Tape Boundary
Assume Turing machine M exhibits the symbolic machine configuration

cHkL = 8s, 8w, h, 8x, k<, 8q, 1<, w<<,

for some x, q  .

Induction Base:
Verify M : 8s, 8w, h, 8x, 1<, gr<<ïM : 8s, 8w, 8 y, 1<, h, gr<<.

Induction Assumption:
M : 8s, 8w, h, 8x, j<, gr<<ïM : 8s, 8w, 8 y, j<, h, gr<<, " j such that 1 § j § k - 1.

Assume further that the instruction table of M results in meta-instructions: 

M1 : 8s, 8w, 8 y, n<, h, 8ci, 1<, gr<<ö 8s, 8w, h, 8x, n<, 8ci+1, 1<, gr<<, y, c0, … , cm œ S*

M2 : 8s, 8w , 8 y, n<, h, 8cm, 1<, gr<<ö 8s, 8w, 8 y, n + 1<, h, gr<<,

where c0, … , cm are the cyclic boundary conditions, with c0 = 8<.
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Induction Proof:

8s, 8w, h, 8x, k<, 8q, 1<, w<<
8s, 88w, h, 8x, k - 1<, 8x, 1<, 8q, 1<, w<<
8s, 88w, h, 8x, k - 1<, gr<< Hreplacing 88x, 1<, 8q, 1<, w< by grL

8s, 8w, 8 y, k - 1<, h, gr<< Hfirst use of induction hypothesisL
8s, 8w, h, 8x, k - 1<, 8c1, 1<, gr<< Husing meta-instruction M1L
8s, 8w, 8 y, k - 1<, h, 8c1, 1<, gr<< Hsecond use of induction hypothesisL
8s, 8w, h, 8x, k - 1<, 8c2, 1<, gr<< Husing meta-instruction M1L
ª

8s, 8w, 8 y, k - 1<, h, 8cm-1, 1<, gr<< IHm - 1Lth use of induction hypothesisM
8s, 8w, h, 8x, k - 1<, 8cm, 1<, gr<< Husing meta-instruction M1L
8s, 8w, 8 y, k<, h, gr<< Huse of induction hypothesis and use of M2L
8s, 8w, h, 8x, k<, 8c1, 1<, gr<< Husing meta-instructionL
8s, 8w, h, 8x, k<, 8c1, 1< 88x, 1<,

8q, 1<, w<<
Hsubstituting back the

explicit right tape portionL

8s, 8w, h, 8x, k + 1<, 8p, 1< 8q, 1<, w<< Hthis step might vary in other casesL

8s, 8w, h, 8x, k + 1<, 8q, 1< 80, p<, w<< for some p > 0
8s, 8w, h, 8x, k + 1<, 8q, 1<, w<< Hsubsuming the finite 0s intowL‡

Scheme: Decreasing Cell Sequence at the Tape Boundary
Assume Turing machine M exhibits:

8s, 8w, h, 88A<, n<, 88B<, 1<, 88R<, k<, gr<< k ¥ 0, an integer
ª

8s, 8w, h, 88A<, n<, 88B<, 2<, 88R<, k - 1<, gr<<
ª

8s, 8w, h, 88A<, n<, 88B<, j<, 88R<, k - j<, gr<<

Induction Base:
Verify that for some function f :

M : 8s, 8w, h, 88A<, n<, 88B<, 1<, 88R<, 1<, gr<<ö
8s, 8w, h, 88A<, n + f H1L<, 88B<, 2<, gr<<

Verify the swap meta-instruction:

8s, 8w, h, 88A<, n<, 88B<, k<, 88R<, 1<, gr<<ö
8s, 8w, h, 88A<, n + k0<, 88B<, 1<, 88R<, k - 1<, 88B<, 1<, gr<<
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Induction Assumption:

M : 8s, 8w, h, 88A<, n<, 88B<, k - 1<, 88R<, 1<, gr<<ö
8s, 8w, h, 88A<, n + f Hk - 1L<, 88B<, k<, gr<<, for some function f

Induction Proof:

8s, 8w, h, 88A<, n<, 88B<, k<, 88R<, 1<, gr<<

8s, 8w, h, 88A<, n + k0<, 88B<, 1<,
88R<, k - 1<, 88B<, 1<, gr<<

Happly swap meta-instructionL

:s, :w, h, :8A<, n + k0 +‚
i=1

k-1
f HiL>,

88B<, k<, 88R<, 0<, 88B<, 1<, gr>>

Happly the induction assumption
k - 1 timesL

:s, :w, h, :8A<, n + k0 +‚
i=1

k-1
f HiL>,

88B<, k + 1<, gr>>

Now, require that

k0 +‚
i=1

k-1

f HiL = f HkL

and hence f HkL = k0 2k.

Similar schema are also supported:

8s, 8w, 88A<, n<, 88B<, k<, h, 88R<, 1<, gr<<

8s, 8w, 88A<, n + k0<, 88B<, 1<, h, 88R<, k - 1<,
88X <, 1<, gr<<

Happly swap meta-instructionL

and 

8s, 8w, 88A<, n<, h, 88B<, k<, 88R<, 1<, gr<<

8s, 8w, 88A<, n + k0<, h, 88B<, 1<, 88R<, k - 1<,
88X <, 1<, gr<<

Happly swap meta-instructionL

Modular Arithmetic
Often meta-instructions are subject to some modular condition.
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Here is an example:

M : 8s, 8gl, 81, n<, h, gr<<ö

s, gl, 881<, Mod@n, 3D<, h, 80, 1, 0<, 3 Floor
n

3
, gr

If possible, the SIP calculates Mod@n, pD explicitly by using information about n.

If the variable is of the form 2 n + 1 and p = 2, then Mod@2 n + 1, 2D = 1.

In  general,  the  SIP  uses  modular  arithmetic  in  the  finite  ring  n,  including
Fermat’s little theorem: 

 Mod@ap, pD = a, " a œ Integers, " p œ Primes

and Euler’s generalization: 

ModAajHnL, nE = 1, " a, n œ Integers.

(Euler’s phi function jHnL gives the number of positive integers less than or equal
to n that are relatively prime to n.)

If nothing specific can be computed, the SIP picks a value v œ 80, … , p - 1< and
generates p subproofs, one for each of the possible v values at each decision point
in the general induction proof.

· The Symbolic Induction Prover Package

The  SIP  includes  the  following  major  functional  packages  to  support  meta-in-
structions and symbolic induction proofs for Turing machine configurations.

metaservices creates rules that represent meta-instructions

swapservices handles all orders of meta-instructions

shiftservices shifts configurations into normal
form to make them comparable

Create and execute meta-instructions.

inductionservices the main package for
induction proof schemes

tracebufferservices detects emerging schemes by
tracing the steps of an induction proof,
producing induction assumptions,
and invokes the SIP recursively for proof

Handling of induction proofs.

getgaugedvarservice handles modulo
arithmetic for symbolic variables
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getgaugedvarservice handles modulo
arithmetic for symbolic variables

Modulo arithmetic for symbolic variables. 

extremepointservices handles logic associated with
maximal invariant tape boundaries

Handling boundary conditions.

semaphoresupport provides services to serialize induction
schemes to prevent “vicious circles”

environmentservices specifies the proof environment
He.g., global parameters, etc.L

Technical services.

· Results

Start with 5, cardI5M = 2110.

Applying  well-known  [2]  and  fast  techniques,  such  as  tree  normal  form,  back-
tracking,  and  simple  loop  detection,  leaves  about  1,000,000  Turing  machines
undecided.

Ë 850,000  Turing  machines  are  of  a  linear  type,  for  example,
8s, 8w, h, 8x, a n + b<, w<<  for  some  x œ S*,  or  slightly  more  complex
and are proved by the SIP to not halt.

Ë 143,000  Turing  machines  are  of  polynomial  or  exponential  configura-
tions and are proved by the SIP to not halt.

Ë 1,000 Turing machines are currently too complex for the SIP.

Ë 900 have been manually proven to not halt.

Ë 100  cases  are  still  holdouts  and  are  currently  under  consideration,
but there is strong evidence that they do not halt.

Ë 6,000 Turing machines halt within 50 × 106 steps.
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Given  that,  we  find  that  for  the  number  of  1s  (S)  left  on  the  tape,  the  number
of  cells  scanned  (Space),  and  the  number  of  moves  (Shift),  the  Marxen  and
Buntrock [3] machine is the champion 

81, R, 2< 81, L, 3<
81, R, 3< 81, R, 2<
81, R, 4< 80, L, 5<
81, L, 1< 81, L, 4<
81, R, 0< 80, L, 1<

with: 

SH5L = 4098
ShiftH5L = 47,176,870
SpaceH5L = 12,289.

The largest unary number (i.e., empty tape with a single block of consecutive 1s)
produced by any halting binary 5-state Turing machine is NumH5L = 165.
The Num champion is: 

81, R, 2< 81, L, 1<
81, R, 3< 81, L, 5<
81, R, 4< 81, R, 5<
80, L, 1< 81, R, 3<
81, R, 0< 80, L, 2<

The possibility exists that the halting question for one or more of the remaining
holdouts is linked to the Collatz 3 x + 1 problem (see also [11]). This is currently
under investigation, and the final results will be reported in a forthcoming paper
[4].
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