
Math. Systems Theory 29, 375-386 (1996) Mathematical
Systems

Theory
�9 1996 Springer-Verlag

New York Inc.

A Note on Busy Beavers and Other Creatures

A.M. Ben-Amram, 1 B. A. Julstrom, 2 and U. Zwick 1

] Department of Computer Science,
Tel Aviv University,
Tel Aviv, Israel
amirben @ math.tau.ac.il
zwick@math.tau.ac.il

2 Department of Computer Science,
St. Cloud State University,
St. Cloud, MN 56301, USA
julstrom@ eeyore.stcloud.msus.edu

"The Beaver has counted with scrupulous care . . . "

L. Carroll, The Hunting of the Snark

Abstract. Consider Turing machines that read and write the symbols 1 and 0 on
a one-dimensional tape that is infinite in both directions, and halt when started on
a tape containing all O's. Rado's busy beaver function ones(n) is the maximum
number of l ' s such a machine, with n states, may leave on its tape when it halts.
The function ones(n) is noncomputable; in fact, it grows faster than any computable
function.

Other functions with a similar nature can also be defined. The function time(n)
is the maximum number of moves such a machine may make before halting. The
function hum(n) is the largest number of l ' s such a machine may leave on its tape
in the form of a single run; and the function space(n) is the maximum number of
tape squares such a machine may scan before it halts.

This paper establishes a variety of bounds on these functions in terms of each
other; for example, time(n) < (2n - 1) x ones(3n + 3). In general, we compare
the growth rates of such functions, and discuss the problem of characterizing their
growth behavior in a more precise way than that given by Rado.

376 A.M. Ben-Amram, B. A. Julstrom, and U. Zwick

1. Introduction

In 1962 Rado described a problem concerning Turing machines of n states (not counting
the halt state) that conform to these restrictions:

�9 The tape is infinite in both directions.
�9 The tape alphabet is {0, 1 }.
�9 The machine both writes and shifts on each move.
�9 The machine writes on the transition to the halt state.
�9 When started on a tape containing all O's (called blank), the machine halts.

He asked the following question: what is the largest number of l ' s such a machine may
leave on its tape when it halts?

This is the busy beaver problem, and the maximum number of l ' s a halting n-state
Turing machine inay leave when started on a blank tape, as a function of n, is the busy
beaver function ones(n), sometimes called Rado's Sigma function (in the literature,
this function has been denoted by E(n) ; we find ones(n) a more meaningful notation).
A machine of n states that, when started on a blank tape, halts with ones(n) l ' s on its
tape is an n-state busy beaver.

Similarly, we may define other functions based on Turing machines of this kind.

�9 Thefunctiontime(n)isthemaximumnumberofmovesann-stateTuringmachine,
with the above restrictions, may make before it halts (the move to the halt state
counts). In other words, it is the maximal time complexity of a halting machine.
In the literature this function is frequently denoted by S(n) and called the shift
function. A machine of n states that executes time(n) moves and then halts is
called an n-state time (or shift) champion.

�9 The function num(n) is defined as follows. Consider all Turing machines of n
states that, when started on blank tapes, halt with a single run of consecutive 1 's
on the tape. Let num(n) be the length of the longest such run for machines of n
states; that is, the largest unary number that can be created by an n-state Turing
machine.

�9 The function space(n) is the maximal number of tape squares an n-state Turing
machine can read before halting when started on a blank tape. This count includes
the square on which a machine starts, but not a square reached only on the halt
transition. This is the maximal space complexity of an n-state halting Turing
machine. We call a machine of n states that reads a maximal number of squares
an n-state space champion.

Rado showed that ones(n) grows faster than any computable function, and is there-
fore noncomputable (Rado, 1962; see also Julstrom, 1993). Though we cannot evaluate
any of these functions in general, methodical examinations of Turing machines ofn states
have established ones(n) and time(n) for small values of n. In particular, ones(l) = 1,
t ime(l) = 1, ones(2) = 4, and time(2) = 6 (Rado, 1962); ones(3) = 6 and time(3) = 21
(Lin and Rado, 1965); ones(4) = 13 and time(4) -- 107 (Brady, 1983). Marxen and
Buntrock reported a 5-state Tufing machine that takes 47,176,870 moves to leave 4,098
l ' s on an initially blank tape (Marxen and Buntrock, 1990). This machine is currently
a candidate for both the busy beaver and time function 5-state championships; it es-

A Note on Busy Beavers and Other Creatures 377

tablishes that ones(5) > 4,098 and time(5) >_ 47,176,870. Marxen and Buntrock also
described a 6-state Turing machine that takes 13,122,572,797 moves to leave 136,612 l ' s
on an initially blank tape. Thus, ones(6) >_ 136,612 and time(6) > 13,122,572,797. We
have found that num(1) = 1, space(l) = 1; num(2) = 4, space(2) = 4; num(3) = 6,
space(3) = 7; and that num(4) = 12, space(4) = 16. The last two results were obtained
using a computer search that relied on the value of time(4) mentioned above.

It is straightforward to demonstrate that the functions num(n), ones(n), and time(n)
are strictly increasing, that the function space(n) is nondecreasing, and that

num(n) < ones(n) • space(n) ~ time(n). (1)

An immediate consequence of the relationships in (1) is that space(n) and time(n) also
grow faster than any computable function and are therefore noncomputable (this also
follows immediately from the undecidability of the halting problem). A consequence of
several theorems in Section 3 is that the same is true of num(n).

More interesting and more difficult to establish are bounds on these functions in
terms of each other in opposite direction to the relations in (1). For example, Rado
(1962) observed that time(n) _< (n + 1) x ones(5n) x 2 ~ and Julstrom (1992)
showed that time(n) < ones(20n). In Section 3 we prove the following results:

(i) space(n) < o n e s (3 n - 1).
1 (ii) space(n) < ~ x num(3n + 3).

(iii) space(n) < log 3 num(3n + 6).
(iv) time(n) _< n x space(n) x 2 space(n).

(v) time(n) < (2n - 1) x ones(3n + 3).
(vi) time(n) < num(3n + 6) .

(vii) ones(n) < �89 x num(3n § 3).

(2)

Note that (vi) immediately gives the bound time(n) < ones(3n + 6). Both this and (v)
are bounds on time() in terms of ones(). Which one of these is better? It seems that the
bound in (v) is better as it involves a smaller argument of the ones() function. However,
we have not been able to prove that this is the case. Following the same reasoning, we
expect that ones(n + 1) > 2 x ones(n) for every sufficiently large n. Section 4 discusses
this problem.

2. The Basic Construction

Almost all the bounds in (2) are based on simulating a given machine M while marking
the extent of M's travels on its tape. We begin by describing this construction.

Let M be an n-state machine that halts when started on a blank tape. The machine
M has 2n transitions (two emanate from every state), among which at least one is a
halting transition. Recall that we do not include a halting state in our machine, but rather
allow transitions whose "new state" component is replaced by "halt." Let T (M) be the
set of nonhalting transitions in M; then IT(M)I < 2n - 1. In fact, we can assume that
[T (M) I = 2n - 1, since there is no use in having more than a single halt transition (as

378 A.M. Ben-Amram, B. A. Julstrom, and U. Zwick

M ' s tape

Mm's tape

�9 I o l o l . . .

m s m s m s m

Fig. 1. The tapes of a Turing machine M and of a machine Mm that simulates M.

there is no input, we deal only with a single computation path, which cannot include two
halting transitions).

The machine that simulates M is called Mm. It simulates M on alternate tape squares
and uses the intervening squares as marking squares. Figure 1 illustrates the relationship
between the squares of Mm's tape and the squares of M's tape. The letters s and m
indicate simulating and marking squares, respectively.

Whenever Mm's head moves from one simulating square to another, Mm writes a 1
in the intervening marking square. When the simulation terminates, there will be a 1 in
every marking square, both of whose neighbors Mm visited during the simulation.

Both machines start on blank tapes, and Mm starts with its head over a simulating
square. M,, uses an additional state q~ to simulate each transition r ~ T (M), as Figure 2
illustrates. The label "x /yD" indicates that on the transition the machine reads x, writes
y, and moves one square in direction D.

The machine Mm reads the symbol under its head, rewrites it as does the corre-
sponding transition in M, and moves two squares in the direction that M moves, to the
adjacent simulating square. En passant, it leaves a 1 in the intervening marking square.

No additional state is required to simulate M ' s halting transition, as Figure 3 shows.
We modify the halting transition of Mm, if necessary, to write a 1.

When M and Mm halt, M,, 's simulating squares hold a copy of M's tape contents,
except perhaps for the one Mm's halt transition left. All marking squares between these
simulating squares contain 1 's (and the rest are 0). The number of marking squares that
contain l ' s is therefore space(M) - 1, where space(M) represents the number of tape
squares that M scanned.

The number of states in Mm is n + IT(M)I = 3n - 1.

in M:

in Mm:

Fig. 2. A transition in M simulated in Mm.

A Note on Busy Beavers and Other Creatures

in M: ~ " ' ~ x/yD halt

379

in Mm :

Fig. 3.

~ x/1D halt

The halting transition of M simulated in Mm.

3. Results

We begin by establishing a bound on space(n) in terms of the busy beaver function
ones(n); this is a direct use of the above construction.

Theorem 1. space(n) _%< ones(3n - 1).

Proof. Let M be an n-state space champion; that is, when started on a blank tape M
scans space(n) tape squares and then halts. Construct the simulating machine mm as

above. Mm leaves at least space(n) - 1 l ' s in the marking squares and at least a single 1
in the simulating squares, written~ its halt transition. The machine Mm therefore leaves
at least space(n) l ' s on its tape. This number, however, cannot exceed the number of l ' s
left by a (3n - 1)-state busy beaver, so

space(n) < ones(3n - 1). []

The next theorem establishes a bound on the function time(n) in terms of the busy
beaver function. As in the proof of Theorem 1, we simulate a given Turing machine, but
here we also count how many times a chosen transition is performed.

Theorem 2. time(n) < (2n - 1)ones(3n + 3).

Proof. Let M be an n-state time champion; that is, M is a Turing machine with n states
that, when started on a blank tape, executes time(n) moves and then halts. For each
nonhalting transition r c T(M) of M, let C g (r) be the number of times this transition
is performed when M starts on a blank tape; clearly,

time(n) = 1 + ~ CM(T),
r~T(M)

where the 1 counts the execution of the halting transition. Since IT (M) I = 2n - 1, there
must be a transition r such that

time(n) - 1
CM(r) _>

2n -- 1

We call such a transition popular.

380 A.M. Ben-Amram, B. A. Julstrom, and U. Zwick

For a given transition r, we define a machine Mr that simulates M in the way Mm
did, but makes use of its marking squares both to mark the scanned portion of the tape
and to count the number of times M executes the transition r. More precisely, consider
the marked zone on the tape; i.e., the range of marking squares set to 1. M~ will add a
1-mark on the end of this zone each time M executes r. Thus when Mr halts, the number
of marks will be greater than CM(r) (greater, because there are also "genuine" marks
that indicate the scanned portion of the tape; e.g.,the mark M~ sets when it simulates
M ' s first transition).

Mr is defined exactly as Mm, with a new state simulating each transition, except for
the transition r, which we want to count. Assume that r moves M's head to the right;
that is, that r is labeled x /yR in M. In M~ the following steps are taken to simulate and
count this transition:

l. Mr rewrites the symbol under its head according to the transition r (that is, it
overwrites x with y) and moves right so that its head is over a marking square.

2. If the marking square is 0, Mr sets it to 1 and shifts right, completing the simu-
lation of the transition in M. If the marking square is already 1, Mr sets it to 0;
the head will be able to return to this position after updating the count by using
the fact that this mark bit is 0 instead of 1.

3. M~ shifts right without changing any symbols until it encounters a marking
square that holds a 0.

4. Mr overwrites this 0 with a 1, thus counting the simulated move; and shifts left.
5. M~ shifts left to the marking square in which it wrote the 0, overwrites the 0

with a 1, and shifts right to a simulating square. This completes its simulation
of r.

This procedure requires five new states. Figure 4 shows the new states and transitions

in Mr.
If M shifts its head left on r, Mr counts the executions of this transition by adding

l ' s to the left in its marking squares; this too requires five new states, illustrated by Figure
4 with the move directions (L's and R's) reversed.

The construction of M~ from M introduces one new state for each of the 2n - 2
transitions in T (M) - {r}. To represent r and count its executions, M~ uses five new
states. Thus the total number of states in Mr is

1/1R ~/1L

n + (2n - 2) + 5 = 3n + 3.

Fig, 4. Simulating and counting in Mr a transition r of M.

A Note on Busy Beavers and Other Creatures 381

When M~ halts, which it will because it simulates M and M halts, its simulating
squares contain a copy of the contents M leaves on its tape; its marking squares contain
l ' s whose number N exceeds the number of executions of transition r in M. Choose r
to be a popular transition; then

time(n) - 1 time(n)
N > I + > - -

2n - 1 2n - 1

Since by definition ones(3n § 3) bounds N, we have

time(n) < (2n - 1) x ones(3n + 3). []

The next theorem extends the marking technique to establish a bound on space(n)
in terms of num(n).

1 num(3n + 3). Theorem 3. space(n) < ~ x

Proof Let M be an n-state space champion. Build Mm in the standard way: marking
squares alternate with simulating squares on which Mm simulates M. Augment this
construction with four new states, as Figure 5 illustrates. Note that the resulting machine
has (3n + 3) states.

On simulating M's halt transition, new states 1 and 2 scan to the left and write l ' s
in all squares until they encounter a 0 in a marking square. States 3 and 4 then scan to
the right filling all squares with l ' s until they too encounter a 0 in a marking square.

The 1 's left on Mm's tape thus form an unbroken run, whose length is 2 • space(n) + 1.
The number of l ' s in this block cannot exceed num(3n + 3), so

2 x space(n) + 1 ~ num(3n + 3),

and the theorem follows. []

in M: ~ x / y D , halt

in Mm:

O/IR

(~ O/1R halt

Fig. 5. Augmenting Mm's halting transition in the proof of Theorem 3.

382 A.M. Ben-Amram, B. A. Julstrom, and U. Zwick

Since ones(n) _< space(n), a corollary of this result is:

Corollary. ones(n) < num(3n + 3)/2.

The function time(n) can be bounded in terms of num(n) using a construction similar
to that of Theorem 2. This is not our best bound, but we give it first for its simplicity.

T h e o r e m 4. time(n) < n x num(3n + 7).

Proof. Let M be an n-state time champion; that is, M executes time(n) moves before
it halts. As in Theorem 2, let r be a popular transition of M and let Mr be a machine that
simulates M while counting the number of times the transition r is made. Recall that
Mr leaves in its marking squares a block of l ' s whose number exceeds the number of
times the transition r has been made. We add to Mr four more states as in the proof of
Theorem 3. These states fill the entire marked section of M~ 's tape with l 's. This creates
a unary number greater than or equal to 2CM(r) + 3. The number of states in M~ is
(3n + 7), so that this block of 1 's cannot be longer than num(3n + 7). As r is popular
we have CM(V) > (time(n) -- I) / (2n -- 1). Thus

time(n) - 1
num(3n + 7) > 2 x + 3

2n - 1

and the result follows. []

We proceed by establishing two intermediate results that will serve the better
bound on time(n) in terms of num(n). The first one gives a bound on time(n) in
terms of space(n), using a standard configuration-counting argument and the pigeon-
hole principle.

T h e o r e m 5. time(n) _< n • space(n) x 2 space(n).

Proof. Let M be an n-state time champion. Before it halts, M scans a number of
squares on its tape that is less than or equal to space(n). Therefore the number of distinct
instantaneous descriptions of M's computation is bounded above by n • space(n) x
2space(n): M may be in one o fn states with its head over one of space(n) tape squares, and
2 space(n) patterns of 0's and l ' s may appear on those squares. If M repeats an instantaneous
description it cannot halt; since M does halt,

time(n) _< n x space(n) x 2 space(n). []

The next result gives a bound on 3 space(n) in terms of num(n). Besides yielding a new
relation between space(n) and num(n), a bound on 3 space(n) will be useful in combination
with the last theorem.

T h e o r e m 6. 3 space(n) _< num(3n + 6).

A Note on Busy Beavers and Other Creatures

0/,L[I L/1R f

1/oR l 1/o~ O/1L

Fig. 6. Augmenting Mm's halting transition in the proof of Theorem 6.

383

Proof. Let M be an n-state space champion. Build Mm a s usual; it has 3n - 1 states.
Note that when M halts, the size of the entire marked zone (simulating squares

and marking squares between them) is 2 • space(n) - 1. Thus on at least one side of
the head 's position there will be at least space(n) - 1 squares of the marked zone (not
counting the square the head is on). Without loss of generality, we assume that side to

be the left.
We augment Mm with seven additional states, in place of M ' s halt transition, for a

total of 3n + 6 states. These states treat the part of the marked zone to the left of the
head, at the moment M halts, as a unary value m (in fact, this area may include some O's
in simulating squares. Our machine will overcome this, and behave as though we really
had a run of l ' s) . The new states, which Figure 6 illustrates, compute the value 3 m+l .

The original halt transition from a state qi is replaced by writing a 1, shifting left, and
mo,r into the first of the new states.

To understand the operation of these states, assume at first that on the right of the
head position, the tape is blank; we remove this assumption later. The unary value m to
the head's left serves as a counter. To its fight is written a value r , set initially to 1 by
the transition that enters the new states.

The new states apply the function r --+ 3r + 4 m times, decrementing the value m
by one each time. Starting with r = 1, this yields a value of 3 m + l - - 2 (this can be easily
proved by induction). When the end of m is detected, the machine adds two more l ' s for
a final value of 3 m + l .

Some comments on the machine: the main loop (r ~ 3r + 4) starts at state 1, with
the head scanning the rightmost square of m. States 1 and 2 test if m has become 0; two
states are needed to take care of O's in simulating squares. If m > 0, we decrement it by
changing its rightmost 1 to a 0 (transition to state 5), thus creating a separation between
m and r. We now move right over r (self-loop at state 5) and enter the loop 6 - 7 - 4 - 3 that
exits to state 1 after replacing r with 3(r + 1) § 1 = 3r + 4 (the last 1 is added in the
transition to state 1). The main loop then starts again, with the head correctly posit ioned
on the rightmost square of m, left of the current representation of r.

To remove the assumption that the tape contains only O's to the right of the head,

384 A.M. Ben-Arm-am, B. A. Julstrom, and U. Zwick

note that the presence of some l ' s on that part of the tape can only increase the final
result, as these 1 's are absorbed into r. Thus the final result will be at least 3 m+~ .

Since the initial value of m is at least space(n) - 1, the number of l ' s the augmented
machine leaves on the tape is at least 3 space(n)-l+l ~-- 3 space(n), and these form a single

contiguous run. The machine has 3n § 6 states; therefore, by the definition of hum(n),

3 space(n) < num(3n + 6). []

Theorem 7. time(n) < num(3n + 6).

Proof By Theorem 5,

time(n) < n x space(n) x 2 space(n).

For n > 4, we know that m = space(n) > 16. Since m22 m < 3" for every m > 13, for
such n,

n x space(n) x 2 space(n) < 3 space(n).

By Theorem 6,

3 space(n) < num(3n + 6).

Consequently, for n > 4,

time(n) < num(3n + 6).

For n _< 3, the result is easily established directly. []

4. Growth Properties

The relationships established among the functions ones(n), hum(n), time(n), and space(n)
raise the question of comparing expressions involving those functions. For example,
(2n - 1) x ones(3n + 3) and ones(3n + 6) are both upper bounds on time(n). Can it be
established that the first is lower for all (sufficiently large) n? Since ones(n) grows faster
than any computable function (Rado, 1962), we expect ones(3n + 6) to be generally
much larger than the former bound. In fact, we expect ones(m + 1) to be much larger
than ones(m) for all sufficiently large m. Rado's result implies, however, only a weaker
property that appears below. The stronger property is formulated as a conjecture.

Theorem 8. For any computable function f ,

ones(n + 1) > f (ones(n))

for an infinite number of values of n.

A Note on Busy Beavers and Other Creatures 385

Proof Let f be a computable function. Let F(n) = maxl<i<n f (i) . Clearly, F is
nondecreasing and also computable. If an N existed such that

ones(n+ 1) < f(ones(n))

for all n > N, then for all n > N we would have

ones(n) <_ F (n-N)(Ones(N)),

where F (i) denotes F iterated i times.
However, ones(N) is a constant so F (n-N) (ones(N)) is a computable function of n.

This contradicts Rado's result: ones(n) cannot be bounded by a computable function. []

The property of ones(n) used in the proof is that of growing faster than any com-
putable function. The same is true for the functions num(n), space(n), and time(n); so
the result of Theorem 8 holds for them as well.

Conjecture. For any computable function f , there is a constant NT such that

ones(n + 1) > f(ones(n))

for all n > NU.

We further conjecture that the same property also holds for the functions num(n),
time(n), and space(n). Note that not every function that grows faster than any com-
putable function has the property of the conjecture. Consider, for example, the function
num'(n) = num([n/2J). This function grows faster than any computable function, but
for every even n, num'(n + 1) = num'(n). However, we do not expect any of ones(),
hum(), space(), and time() to be so ill-behaved.

A stronger conjecture would be that the relationship also holds across the four
functions; e.g., that for every computable function f there is a constant Nf such that for
every n > Nf we have

num(n + 1) > f(time(n)).

Until the conjecture is proved, we content ourselves with a partial result.

Theorem 9. For any computable function f , a constant cf exists such that

num(n + cf) > f(num(n))

for all n.

Proof. Let f be a computable function. A Turing machine My that computes f exists.
When My is started on a tape that contains the unary number n, with its head positioned

386 A.M. Ben-Amram, B. A. Julstrom, and U. Zwick

either to the left or inside this number, Mf will create the unary number f (n) and halt.
Let cf be the number of states of My. Let n be given, and let Mn be an n-state Turing
machine that, when started on a blank tape, halts leaving a block of hum(n) l 's on the
tape. Without loss of generality we may assume that Mn halts either inside or to the left
of the number it left on the tape.

Let M = M m ""-> mf , where the arrow represents sequential composition of Turing
machines. Then M has n + cf states and, started on a blank tape, it halts leaving a block
of f (nnm(n)) l 's. Of course, the unary number created by an (n § c/)-state machine
cannot exceed num(n § Cf). []

5. Conclusion

We have described four noncomputable functions related to the busy beaver problem and
have established bounds on them in terms of each other. The proofs of these theorems
illustrate a variety of constructive techniques. Other results motivate conjectures concern-
ing relationships between expressions involving the four functions. These conjectures
suggest further research into noncomputable functions and the busy beaver problem.

References

[1] Brady, Allen H. (1983). The determination of the value of Rado's noncomputable function Z(k) for
four-state Turing machines. Mathematics of Computation, Vol. 40, No. 162, pp. 647-665.

[2] Julstrom, Bryant A. (1992). A bound on the shift function in terms of the Busy Beaver function. SIGACT
News, Vol. 23, No. 3 (Summer), pp. 100-106.

[3] Julstrom, Bryant A. (1993). Noncomputability and the Busy Beaver problem (UMAP Unit 728). The
UMAP Journal, Vol. 14, No. 1, pp. 39-74.

[4] Lin, Shen, and Tibor Rado (1965). Computer studies of Turing machine problems. Journal of the Asso-
ciation for Computing Machinery, Vol. 12, pp. 196-212.

[5] Marxen, Heiner, and Jiirgen Buntrock (1990). Attacking the Busy Beaver Problem 5. Bulletin of the
European Association for Theoretical Computer Science, Vol. 40, pp. 247-251.

[6] Rado, Tibor (1962). On non-computable functions. The Bell System Technical Journal, Vol. 41, pp. 877-
884.

Received August 4, 1993, and in final form July 18, 1994.

