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"The Beaver has counted with scrupulous care . . . "  

L. Carroll, The Hunting of the Snark 

Abstract. Consider Turing machines that read and write the symbols 1 and 0 on 
a one-dimensional tape that is infinite in both directions, and halt when started on 
a tape containing all O's. Rado's busy beaver function ones(n) is the maximum 
number of  l ' s  such a machine, with n states, may leave on its tape when it halts. 
The function ones(n) is noncomputable; in fact, it grows faster than any computable 
function. 

Other functions with a similar nature can also be defined. The function time(n) 
is the maximum number of  moves such a machine may make before halting. The 
function hum(n) is the largest number of  l ' s  such a machine may leave on its tape 
in the form of a single run; and the function space(n) is the maximum number of 
tape squares such a machine may scan before it halts. 

This paper establishes a variety of  bounds on these functions in terms of  each 
other; for example, time(n) < (2n - 1) x ones(3n + 3). In general, we compare 
the growth rates of  such functions, and discuss the problem of characterizing their 
growth behavior in a more precise way than that given by Rado. 
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1. Introduction 

In 1962 Rado described a problem concerning Turing machines of n states (not counting 
the halt state) that conform to these restrictions: 

�9 The tape is infinite in both directions. 
�9 The tape alphabet is {0, 1 }. 
�9 The machine both writes and shifts on each move. 
�9 The machine writes on the transition to the halt state. 
�9 When started on a tape containing all O's (called blank), the machine halts. 

He asked the following question: what is the largest number of l ' s  such a machine may 
leave on its tape when it halts? 

This is the busy beaver  problem, and the maximum number of l ' s  a halting n-state 
Turing machine inay leave when started on a blank tape, as a function of  n, is the busy 
beaver function ones(n), sometimes called Rado's Sigma function (in the literature, 
this function has been denoted by E(n) ;  we find ones(n) a more meaningful notation). 
A machine of n states that, when started on a blank tape, halts with ones(n) l ' s  on its 
tape is an n-state busy beaver. 

Similarly, we may define other functions based on Turing machines of  this kind. 

�9 Thefunctiontime(n)isthemaximumnumberofmovesann-stateTuringmachine, 
with the above restrictions, may make before it halts (the move to the halt state 
counts). In other words, it is the maximal time complexity of  a halting machine. 
In the literature this function is frequently denoted by S(n) and called the shift 
function. A machine of n states that executes time(n) moves and then halts is 
called an n-state time (or shift) champion. 

�9 The function num(n) is defined as follows. Consider all Turing machines of  n 
states that, when started on blank tapes, halt with a single run of consecutive 1 's 
on the tape. Let num(n) be the length of  the longest such run for machines of n 
states; that is, the largest unary number that can be created by an n-state Turing 
machine. 

�9 The function space(n) is the maximal number of  tape squares an n-state Turing 
machine can read before halting when started on a blank tape. This count includes 
the square on which a machine starts, but not a square reached only on the halt 
transition. This is the maximal space complexity of an n-state halting Turing 
machine. We call a machine of  n states that reads a maximal number of squares 
an n-state space champion. 

Rado showed that ones(n) grows faster than any computable function, and is there- 
fore noncomputable (Rado, 1962; see also Julstrom, 1993). Though we cannot evaluate 
any of these functions in general, methodical examinations of  Turing machines ofn  states 
have established ones(n) and time(n) for small values of n. In particular, ones(l)  = 1, 
t ime(l) = 1, ones(2) = 4, and time(2) = 6 (Rado, 1962); ones(3) = 6 and time(3) = 21 
(Lin and Rado, 1965); ones(4) = 13 and time(4) -- 107 (Brady, 1983). Marxen and 
Buntrock reported a 5-state Tufing machine that takes 47,176,870 moves to leave 4,098 
l ' s  on an initially blank tape (Marxen and Buntrock, 1990). This machine is currently 
a candidate for both the busy beaver and time function 5-state championships; it es- 
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tablishes that ones(5) > 4,098 and time(5) >_ 47,176,870. Marxen and Buntrock also 
described a 6-state Turing machine that takes 13,122,572,797 moves to leave 136,612 l ' s  
on an initially blank tape. Thus, ones(6) >_ 136,612 and time(6) > 13,122,572,797. We 
have found that num(1) = 1, space(l) = 1; num(2) = 4, space(2) = 4; num(3) = 6, 
space(3) = 7; and that num(4) = 12, space(4) = 16. The last two results were obtained 
using a computer search that relied on the value of  time(4) mentioned above. 

It is straightforward to demonstrate that the functions num(n), ones(n), and time(n) 
are strictly increasing, that the function space(n) is nondecreasing, and that 

num(n) < ones(n) • space(n) ~ time(n). (1) 

An immediate consequence of the relationships in (1) is that space(n) and time(n) also 
grow faster than any computable function and are therefore noncomputable (this also 
follows immediately from the undecidability of  the halting problem). A consequence of  
several theorems in Section 3 is that the same is true of  num(n). 

More interesting and more difficult to establish are bounds on these functions in 
terms of  each other in opposite direction to the relations in (1). For example, Rado 
(1962) observed that time(n) _< (n + 1) x ones(5n) x 2 ~ and Julstrom (1992) 
showed that time(n) < ones(20n). In Section 3 we prove the following results: 

(i) space(n) < o n e s ( 3 n -  1). 
1 (ii) space(n) < ~ x num(3n + 3). 

(iii) space(n) < log 3 num(3n + 6). 
(iv) time(n) _< n x space(n) x 2 space(n). 

(v) time(n) < (2n - 1) x ones(3n + 3). 
(vi) time(n) < num(3n + 6 ) .  

(vii) ones(n) < �89 x num(3n § 3). 

(2) 

Note that (vi) immediately gives the bound time(n) < ones(3n + 6). Both this and (v) 
are bounds on time( ) in terms of  ones().  Which one of  these is better? It seems that the 
bound in (v) is better as it involves a smaller argument of  the ones( ) function. However, 
we have not been able to prove that this is the case. Following the same reasoning, we 
expect that ones(n + 1) > 2 x ones(n) for every sufficiently large n. Section 4 discusses 
this problem. 

2. The Basic Construction 

Almost all the bounds in (2) are based on simulating a given machine M while marking 
the extent of M's  travels on its tape. We begin by describing this construction. 

Let M be an n-state machine that halts when started on a blank tape. The machine 
M has 2n transitions (two emanate from every state), among which at least one is a 
halting transition. Recall that we do not include a halting state in our machine, but rather 
allow transitions whose "new state" component is replaced by "halt." Let T (M) be the 
set of  nonhalting transitions in M; then IT(M)I < 2n - 1. In fact, we can assume that 
[ T (M) I = 2n - 1, since there is no use in having more than a single halt transition (as 
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M ' s  tape  

Mm's tape  

�9 I o l o l . . .  

m s m s m s m  

Fig. 1. The tapes of a Turing machine M and of a machine Mm that simulates M. 

there is no input, we deal only with a single computation path, which cannot include two 
halting transitions). 

The machine that simulates M is called Mm. It simulates M on alternate tape squares 
and uses the intervening squares as marking squares. Figure 1 illustrates the relationship 
between the squares of Mm's tape and the squares of M's  tape. The letters s and m 
indicate simulating and marking squares, respectively. 

Whenever Mm's head moves from one simulating square to another, Mm writes a 1 
in the intervening marking square. When the simulation terminates, there will be a 1 in 
every marking square, both of whose neighbors Mm visited during the simulation. 

Both machines start on blank tapes, and Mm starts with its head over a simulating 
square. M,, uses an additional state q~ to simulate each transition r ~ T (M), as Figure 2 
illustrates. The label "x /yD"  indicates that on the transition the machine reads x, writes 
y, and moves one square in direction D. 

The machine Mm reads the symbol under its head, rewrites it as does the corre- 
sponding transition in M, and moves two squares in the direction that M moves, to the 
adjacent simulating square. En passant, it leaves a 1 in the intervening marking square. 

No additional state is required to simulate M ' s  halting transition, as Figure 3 shows. 
We modify the halting transition of Mm, if necessary, to write a 1. 

When M and Mm halt, M,, 's  simulating squares hold a copy of  M's  tape contents, 
except perhaps for the one Mm's halt transition left. All marking squares between these 
simulating squares contain 1 's (and the rest are 0). The number of  marking squares that 
contain l ' s  is therefore space(M) - 1, where space(M) represents the number of  tape 
squares that M scanned. 

The number of  states in Mm is n + IT(M)I = 3n - 1. 

in M:  

in Mm: 

Fig. 2. A transition in M simulated in Mm. 
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in M: ~ " ' ~  x/yD halt 
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in Mm : 

Fig. 3. 

~ x/1D halt 

The halting transition of M simulated in Mm. 

3. Results 

We begin by establishing a bound on space(n) in terms of the busy beaver function 
ones(n); this is a direct use of  the above construction. 

Theorem 1. space(n) _%< ones(3n - 1). 

Proof. Let M be an n-state space champion; that is, when started on a blank tape M 
scans space(n) tape squares and then halts. Construct the simulating machine mm as 

above. Mm leaves at least space(n) - 1 l ' s  in the marking squares and at least a single 1 
in the simulating squares, written~ its halt transition. The machine Mm therefore leaves 
at least space(n) l ' s  on its tape. This number, however, cannot exceed the number of l ' s  
left by a (3n - 1)-state busy beaver, so 

space(n) < ones(3n - 1). [] 

The next theorem establishes a bound on the function time(n) in terms of  the busy 
beaver function. As in the proof of  Theorem 1, we simulate a given Turing machine, but 
here we also count how many times a chosen transition is performed. 

Theorem 2. time(n) < (2n - 1)ones(3n + 3). 

Proof. Let M be an n-state time champion; that is, M is a Turing machine with n states 
that, when started on a blank tape, executes time(n) moves and then halts. For each 
nonhalting transition r c T(M) of M, let C g ( r )  be the number of  times this transition 
is performed when M starts on a blank tape; clearly, 

time(n) = 1 +  ~ CM(T), 
r~T(M) 

where the 1 counts the execution of the halting transition. Since IT (M) I = 2n - 1, there 
must be a transition r such that 

time(n) - 1 
CM(r) _> 

2n -- 1 

We call such a transition popular. 
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For a given transition r, we define a machine Mr that simulates M in the way Mm 
did, but makes use of its marking squares both to mark the scanned portion of  the tape 
and to count the number of times M executes the transition r. More precisely, consider 
the marked zone on the tape; i.e., the range of marking squares set to 1. M~ will add a 
1-mark on the end of  this zone each time M executes r. Thus when Mr halts, the number 
of  marks will be greater than CM(r) (greater, because there are also "genuine" marks 
that indicate the scanned portion of  the tape; e.g.,the mark M~ sets when it simulates 
M ' s  first transition). 

Mr is defined exactly as Mm, with a new state simulating each transition, except for 
the transition r,  which we want to count. Assume that r moves M's  head to the right; 
that is, that r is labeled x /yR  in M. In M~ the following steps are taken to simulate and 
count this transition: 

l. Mr rewrites the symbol under its head according to the transition r (that is, it 
overwrites x with y) and moves right so that its head is over a marking square. 

2. If  the marking square is 0, Mr sets it to 1 and shifts right, completing the simu- 
lation of  the transition in M. If  the marking square is already 1, Mr sets it to 0; 
the head will be able to return to this position after updating the count by using 
the fact that this mark bit is 0 instead of 1. 

3. M~ shifts right without changing any symbols until it encounters a marking 
square that holds a 0. 

4. Mr overwrites this 0 with a 1, thus counting the simulated move; and shifts left. 
5. M~ shifts left to the marking square in which it wrote the 0, overwrites the 0 

with a 1, and shifts right to a simulating square. This completes its simulation 
of r. 

This procedure requires five new states. Figure 4 shows the new states and transitions 

in Mr. 
If  M shifts its head left on r, Mr counts the executions of  this transition by adding 

l ' s  to the left in its marking squares; this too requires five new states, illustrated by Figure 
4 with the move directions (L's and R's) reversed. 

The construction of  M~ from M introduces one new state for each of  the 2n - 2 
transitions in T ( M )  - {r}. To represent r and count its executions, M~ uses five new 
states. Thus the total number of  states in Mr is 

1/1R ~/1L 

n + (2n - 2) + 5 = 3n + 3. 

Fig, 4. Simulating and counting in Mr a transition r of M. 
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When M~ halts, which it will because it simulates M and M halts, its simulating 
squares contain a copy of the contents M leaves on its tape; its marking squares contain 
l ' s  whose number N exceeds the number of  executions of  transition r in M. Choose r 
to be a popular transition; then 

time(n) - 1 time(n) 
N > I +  > - -  

2n - 1 2n - 1 

Since by definition ones(3n § 3) bounds N, we have 

time(n) < (2n - 1) x ones(3n + 3). [] 

The next theorem extends the marking technique to establish a bound on space(n) 
in terms of num(n). 

1 num(3n + 3). Theorem 3. space(n) < ~ x 

Proof Let M be an n-state space champion. Build Mm in the standard way: marking 
squares alternate with simulating squares on which Mm simulates M. Augment this 
construction with four new states, as Figure 5 illustrates. Note that the resulting machine 
has (3n + 3) states. 

On simulating M's  halt transition, new states 1 and 2 scan to the left and write l ' s  
in all squares until they encounter a 0 in a marking square. States 3 and 4 then scan to 
the right filling all squares with l ' s  until they too encounter a 0 in a marking square. 

The 1 's left on Mm's tape thus form an unbroken run, whose length is 2 • space(n) + 1. 
The number of l ' s  in this block cannot exceed num(3n + 3), so 

2 x space(n) + 1 ~ num(3n + 3), 

and the theorem follows. [] 

in M: ~ x / y D ,  halt 

in Mm: 

O/IR 

( ~ O/1R halt 

Fig. 5. Augmenting Mm's halting transition in the proof of Theorem 3. 
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Since ones(n) _< space(n), a corollary of this result is: 

Corollary. ones(n) < num(3n + 3)/2. 

The function time(n) can be bounded in terms of num(n) using a construction similar 
to that of  Theorem 2. This is not our best bound, but we give it first for its simplicity. 

T h e o r e m  4. time(n) < n x num(3n + 7). 

Proof. Let M be an n-state time champion; that is, M executes time(n) moves before 
it halts. As in Theorem 2, let r be a popular transition of  M and let Mr be a machine that 
simulates M while counting the number of  times the transition r is made. Recall that 
Mr leaves in its marking squares a block of  l ' s  whose number exceeds the number of  
times the transition r has been made. We add to Mr four more states as in the proof of 
Theorem 3. These states fill the entire marked section of  M~ 's tape with l 's. This creates 
a unary number greater than or equal to 2CM(r) + 3. The number of  states in M~ is 
(3n + 7), so that this block of  1 's cannot be longer than num(3n + 7). As r is popular 
we have CM(V) > (time(n) -- I ) / (2n  -- 1). Thus 

time(n) - 1 
num(3n + 7 )  > 2 x + 3 

2n - 1 

and the result follows. [] 

We proceed by establishing two intermediate results that will serve the better 
bound on time(n) in terms of num(n). The first one gives a bound on time(n) in 
terms of  space(n), using a standard configuration-counting argument and the pigeon- 
hole principle. 

T h e o r e m  5. time(n) _< n • space(n) x 2 space(n). 

Proof. Let M be an n-state time champion. Before it halts, M scans a number of 
squares on its tape that is less than or equal to space(n). Therefore the number of  distinct 
instantaneous descriptions of  M's  computation is bounded above by n • space(n) x 
2space(n): M may be in one o fn  states with its head over one of  space(n) tape squares, and 
2 space(n) patterns of  0's and l ' s  may appear on those squares. If  M repeats an instantaneous 
description it cannot halt; since M does halt, 

time(n) _< n x space(n) x 2 space(n). [] 

The next result gives a bound on 3 space(n) in terms of  num(n). Besides yielding a new 
relation between space(n) and num(n), a bound on 3 space(n) will be useful in combination 
with the last theorem. 

T h e o r e m  6. 3 space(n) _< num(3n + 6). 
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0/,L[ I L/1R f 

1/oR l 1/o~ O/1L 

Fig. 6. Augmenting Mm's halting transition in the proof of Theorem 6. 
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Proof. Let M be an n-state space champion. Build Mm a s  usual; it has 3n - 1 states. 
Note that when M halts, the size of  the entire marked zone (simulating squares 

and marking squares between them) is 2 • space(n) - 1. Thus on at least one side of  
the head 's  position there will be at least space(n) - 1 squares of the marked zone (not 
counting the square the head is on). Without loss of  generality, we assume that side to 

be the left. 
We augment Mm with seven additional states, in place of  M ' s  halt transition, for a 

total of  3n + 6 states. These states treat the part of  the marked zone to the left of the 
head, at the moment  M halts, as a unary value m (in fact, this area may  include some O's 
in simulating squares. Our machine will overcome this, and behave as though we really 
had a run of  l ' s ) .  The new states, which Figure 6 illustrates, compute the value 3 m+l . 

The original halt transition from a state qi is replaced by writing a 1, shifting left, and 
mo,r into the first of  the new states. 

To understand the operation of these states, assume at first that on the right of the 
head position, the tape is blank; we remove this assumption later. The unary value m to 
the head's  left serves as a counter. To its fight is written a value r ,  set initially to 1 by 
the transition that enters the new states. 

The new states apply the function r --+ 3r + 4 m times, decrementing the value m 
by one each time. Starting with r = 1, this yields a value of  3 m + l  - -  2 (this can be easily 
proved by induction). When the end of m is detected, the machine adds two more l ' s  for 
a final value of  3 m + l  . 

Some comments on the machine: the main loop (r ~ 3r + 4) starts at state 1, with 
the head scanning the rightmost square of  m. States 1 and 2 test if m has become 0; two 
states are needed to take care of  O's in simulating squares. If  m > 0, we decrement it by 
changing its rightmost 1 to a 0 (transition to state 5), thus creating a separation between 
m and r. We now move right over r (self-loop at state 5) and enter the loop 6 - 7 - 4 - 3  that 
exits to state 1 after replacing r with 3(r  + 1) § 1 = 3r + 4 (the last 1 is added in the 
transition to state 1). The main loop then starts again, with the head correctly posit ioned 
on the rightmost square of  m, left of  the current representation of  r.  

To remove the assumption that the tape contains only O's to the right of the head, 
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note that the presence of some l ' s  on that part of the tape can only increase the final 
result, as these 1 's are absorbed into r. Thus the final result will be at least 3 m+~ . 

Since the initial value of m is at least space(n) - 1, the number of  l ' s  the augmented 
machine leaves on the tape is at least 3 space(n)-l+l ~-- 3 space(n), and these form a single 

contiguous run. The machine has 3n § 6 states; therefore, by the definition of  hum(n), 

3 space(n) < num(3n + 6). [] 

Theorem 7. time(n) < num(3n + 6). 

Proof By Theorem 5, 

time(n) < n x space(n) x 2 space(n). 

For n > 4, we know that m = space(n) > 16. Since m22 m < 3" for every m > 13, for 
such n, 

n x space(n) x 2 space(n) < 3 space(n). 

By Theorem 6, 

3 space(n) < num(3n + 6). 

Consequently, for n > 4, 

time(n) < num(3n + 6). 

For n _< 3, the result is easily established directly. [] 

4. Growth Properties 

The relationships established among the functions ones(n), hum(n), time(n), and space(n) 
raise the question of comparing expressions involving those functions. For example, 
(2n - 1) x ones(3n + 3) and ones(3n + 6) are both upper bounds on time(n). Can it be 
established that the first is lower for all (sufficiently large) n? Since ones(n) grows faster 
than any computable function (Rado, 1962), we expect ones(3n + 6) to be generally 
much larger than the former bound. In fact, we expect ones(m + 1) to be much larger 
than ones(m) for all sufficiently large m. Rado's result implies, however, only a weaker 
property that appears below. The stronger property is formulated as a conjecture. 

Theorem 8. For any computable function f ,  

ones(n + 1) > f (ones(n))  

for an infinite number of values of n. 
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Proof Let f be a computable function. Let F(n) = maxl<i<n f ( i ) .  Clearly, F is 
nondecreasing and also computable. If an N existed such that 

ones(n+ 1) < f(ones(n)) 

for all n > N, then for all n > N we would have 

ones(n) <_ F (n-N)(Ones(N)), 

where F (i) denotes F iterated i times. 
However, ones(N) is a constant so F (n-N) (ones(N)) is a computable function of n. 

This contradicts Rado's result: ones(n) cannot be bounded by a computable function. [] 

The property of ones(n) used in the proof is that of growing faster than any com- 
putable function. The same is true for the functions num(n), space(n), and time(n); so 
the result of Theorem 8 holds for them as well. 

Conjecture. For any computable function f ,  there is a constant NT such that 

ones(n + 1 ) >  f(ones(n)) 

for all n > NU. 

We further conjecture that the same property also holds for the functions num(n), 
time(n), and space(n). Note that not every function that grows faster than any com- 
putable function has the property of the conjecture. Consider, for example, the function 
num'(n) = num([n/2J). This function grows faster than any computable function, but 
for every even n, num'(n + 1) = num'(n). However, we do not expect any of ones(), 
hum(), space(), and time( ) to be so ill-behaved. 

A stronger conjecture would be that the relationship also holds across the four 
functions; e.g., that for every computable function f there is a constant Nf such that for 
every n > Nf we have 

num(n + 1) > f(time(n)). 

Until the conjecture is proved, we content ourselves with a partial result. 

Theorem 9. For any computable function f ,  a constant cf exists such that 

num(n + cf) > f(num(n)) 

for all n. 

Proof. Let f be a computable function. A Turing machine My that computes f exists. 
When My is started on a tape that contains the unary number n, with its head positioned 
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either to the left or inside this number, Mf will create the unary number f ( n )  and halt. 
Let cf be the number of states of My. Let n be given, and let Mn be an n-state Turing 
machine that, when started on a blank tape, halts leaving a block of hum(n) l 's  on the 
tape. Without loss of generality we may assume that Mn halts either inside or to the left 
of the number it left on the tape. 

Let M = M m ""-> mf ,  where the arrow represents sequential composition of Turing 
machines. Then M has n + cf states and, started on a blank tape, it halts leaving a block 
of f (nnm(n))  l 's. Of course, the unary number created by an (n § c/)-state machine 
cannot exceed num(n § Cf). [] 

5. Conclusion 

We have described four noncomputable functions related to the busy beaver problem and 
have established bounds on them in terms of each other. The proofs of these theorems 
illustrate a variety of constructive techniques. Other results motivate conjectures concern- 
ing relationships between expressions involving the four functions. These conjectures 
suggest further research into noncomputable functions and the busy beaver problem. 
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