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1. Introduction

The representation of the Universal Computing Machine in the guise of the
stored-program digital computer is now well known among serious students
of computer science. On the periphery, a modern generation of technologists
seems unable to conceive of a time when “computer” meant “a person who
computes” and the concept of “programming” was not ubiquitous. For prac¬
tical reasons, a modem computer is much more complex than is minimally
necessary to achieve universality. The original formulation of a Universal
Computing Machine (Turing 1936-7) involved a table based upon 15 sym¬
bols and 28 states with no restriction imposed on the length of a sequence
of atomic acts (“move” and “print”) permitted prior to a change in state.
An aboriginal use of macros simplified the description.

Briefly stated, the Universal Computing Machine is an active finite-state
device of limited size connected to a passive medium of unlimited extent.
The active device writes on and reads from the passive medium. Any other

finite-state machine of any size or complexity whatsoever, even one con¬
nected to its own passive recording medium, may be reduced to nothing
more than an abstraction recorded in the medium of the Universal Ma¬
chine. The Universal Machine without any change in its mechanism then
assumes the identity of the machine which has been described to it.

A competition to find the smallest Universal Turing Machine received
at one time a certain amount of attention (cf. Minsky 1967). The measure
of “smallness” proposed was the size of the state-symbol product in the
machine description. A clever construction by Shannon 1956 had demon¬
strated that with enough symbols any Turing machine can be reduced to only
two states. This demonstration, along with his companion construction re¬
ducing any machine to a machine with only two symbols, corroborated the
notion derived from experience that machine states can be traded for sym-
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bols in such a way as to preserve a roughly constant product of the number

of states required times the number of symbols required.
Minsky 1962 demonstrated a four-state by seven-symbol Turing machine

to simulate a universal Tag system and in a footnote announced that (he and
D. Bobrow had determined) there could not be a two-state by two-symbol
Universal Turing Machine. In a private conversation (ca. 1964) Professor
John McCarthy of Stanford University remarked, “We thought if we were
to find the smallest universal machine then we could learn a great deal
about computability — of course that wouldn’t be so!” And, the last word
representing a prevailing feeling is given by Minsky 1967 who suggests that
“the question is an intensely tricky puzzle and has essentially no serious
mathematical interest.”

A related path of investigation has looked at simple possibilities for self¬

reproduction in systems of cellular automata. Codd 1968 and others con¬
tinued with the pioneering work of von Neumann who used a cellular au¬
tomaton model suggested by S.M. Ulam (cf. Burks 1970, and also Arbib,
this volume). Codd’s work departed from the usual top-down design of
functioning systems by virtue of his use of a computer to search for natu¬
rally occurring mechanisms which he could employ in his construction of
universal cellular systems.

The size of the smallest universal machine remains unknown, however,
whether or not it is of any serious mathematical interest. With our minds
remaining open to the possibility of practical, scientific, or simply philo¬
sophical interest we shall examine the area of simple Turing machines and
systems of cellular automata inspired by two games: Rado’s Busy Beaver
Game and Conway’s Game of Life. We shall look at some questions which
are hardly explored and some which may be, for reasons beyond our com¬
prehension, virtually unanswerable.

2. Turing Machine Questions

The Busy Beaver Game

The Busy Beaver Game was invented by Tibor Rado 1962. It is based upon
the Kleene 1952 representation of Turing machines in which each sequence
of atomic acts consists of printing one symbol and making one move to an
adjacent square before changing to the next state. For the Turing machines
in his game, Rado added an external zero state to denote the act of halting.
The machines deal with only two symbols, “0” (blank) and “1” (mark). The
three-state machine shown in Figure 1 is in the precise form used by Rado
as an entry in his game.
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(scanned symbol)

0 1

(current state) 1 1R2 1R0 Score 5

2 1L2 0R3 Shifts 21

3 1L3 1L1

Figure 1. A three-state Turing machine for Rado’s Busy Beaver Game.

The Turing machines of the Busy Beaver Game operate on a two-way
infinite tape. The tape is initially blank (all zeros), and the “contest” is
among machines having the same number of states. The objective is to
find the machine which can print the most marks (ones) on its tape before
halting. Not all machines halt, of course, so the problem is not merely
one of combinatoric unwieldiness, but one of general undecidability. Rado
showed that the maximum number of marks which can be placed upon a
blank input tape by a machine of k states defines a noncomputable function
E(fc). Using essentially a diagonal argument he demonstrated that if / is
some computable function then there exists a positive integer n such that

E (k) > f(k ) for all k > n.

Related to the function E is another function, the maximum shift number,
S(k), representing the maximum number of moves or steps that can be taken
by a fc-state machine which halts after starting on a blank tape. Clearly, S(k)
is not computable, else E(fc) could always be computed through a simple
process of enumeration once the maximum shift number were known.

The three-state machine shown in Figure 1 will mark five l’s on a blank
tape in 21 shifts after beginning in state 1. There are five distinct three-state
machines which score six, but this is the only machine which will operate
for 21 steps (Lin and Rado 1965). Two machines are shown in Figure 2
which represent those three-state machines (the vast majority) which will
never halt. The labels for the two machines describe their classes of non¬
stopping behavior, and the potential halt entries (unreachable) have been

left unspecified.
Experience has shown that a small machine picked at random will very

likely never halt. Furthermore, such a machine, started on a blank tape will
probably, say, 95% of the time, behave in a trivial way making it obvious
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(symbol)

0 0 1

(state) 1 1R2 1L3 1 1R2 0L3

2 0L1 0R2 2 1L2 1R1

3 1L1 — 3 — 1L1

(a) Counter (b) Xmas Tree

Figure 2. Nonstopping three-state Turing machines (blank input tape).

that it will never halt. The machines in Figure 2 (from a set of around one
percent of the three-state machines considered for the game) represent a
slightly more complicated behavior — not the simple looping displayed by a
machine which merely “runs away” in one direction down the length of its

tape.
While the halting problem for Turing machines with blank input tapes

is recursively unsolvable in general, we have no reason to say that given
a particular machine we cannot, for logical reasons, declare that the halt¬
ing problem for that machine on a blank input tape is unsolvable. (Turing
demonstrated that there is a particular machine, namely the Universal Ma¬
chine, for which the halting problem is undecidable for arbitrary input.)
Notwithstanding the fact that very deep mathematical problems such as
Fermat’s “Last Theorem” and the Goldbach Conjecture each reduce to de¬
ciding the halting problem of an individual Turing machine with a blank
input tape, we seem intuitively to relegate the individual problems to the
combinatoric realm where an ideal computer with sufficient speed and a
large enough memory would provide a solution. Rado, on the other hand,
wondered out loud about the possibility of there being a particular value of
n for which the value of E (n) could not be decided for logical reasons, an
untenable position in the eyes of his logician colleagues.

With regards to his Busy Beaver Game, Rado 1963 struck a pessimistic
note in declaring that “even though skilled mathematicians and experienced
programmers attempted to evaluate E(3) and 5(3), there is no evidence
that any known approach will yield the answer, even if we avail ourselves
of high-speed computers and elaborate programs. As regards E(4), 5(4),
the situation seems to be entirely hopeless at present.” His pessimism was
premature relative to the value for k. At a time when “high-speed” meant
a several microsecond cycle time, and integrated circuits were still in the
laboratory, high speed computers were not abundant, and their available
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time was measured and precious. Nevertheless, the value of £(3) = 6 was
soon proved (Lin and Rado 1965), and the value of £(4) = 13 was discovered
and the case for k = 4 was reduced to manageable proportions (Brady 1966).

Still, Rado’s assessment was only slightly misplaced, because an unreach¬
able lower bound was subsequently demonstrated for k > 7. By means of

a recursive construction on the states of a machine Green 1964 was able to
put what appears to be a nonprimitive recursive lower bound on £(/c) and
show that

£(7) > 22,961

and £(8) > 3 • (7 • 392 — l)/2.

For a small value of k there was then a score to compare with the age of

the universe expressed in nanoseconds! If the problem was then tractable

for k = 4, where did the real difficulties lie?

In 1971, searching for five-state machines with structures similar to those
of Green’s, D.S.Lynn 1972 first pushed the lower bound for £(5) to 22
with 435 shifts. Later, when a large amount of low priority computer time
became available, he was able to look at what he estimated to be about ten
percent of the tree-normal five-state machines and extended the limits to
£(5) > 112 and S( 5) > 7,707 (Lynn 1974). There the problem sat until a
recent flurry of computer searches by several individuals culminated in a
nearly no contest entry by Uhing 1986 with new lower bounds of

£(5) > 1,915 and 5(5) > 2,358,063.

Uhing used a microprocessor controlling a “hardware Turing-machine
simulator. The hardware simulator was constructed using less than $100
worth of parts and materials, including 32 integrated circuits, sockets and
a circuit board.” Over several months Uhing simulated about 260,000,000
five-state machines leaving 2,500,000 machines undecided. The high scor¬

ing machines are shown in Figure 3.
Even though it might appear now that the five-state problem is within

grasp, there is a distinct possibility that the limit of practical solvability
has in fact been reached. While we can follow Uhing’s current champion
machines until they halt, it is not clear at all how the machines work. Any
cleverness in their construction is not the result of human creation, so there
is a conspicuous absence of documentation! In light of Green’s results it
was easy to accept that the turning point for the Busy Beaver Game might
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0 1

1 1R2 1L3

2 0L1 0L4

3 1L1 1R0

4 1L2 1R5

5 0R4 0R2

Score = 1,915

Shifts = 2,133,492

0 1

1 1R2 1R0

2 1L3 1R3

3 0R5 0L4

4 1L3 0L2

5 1R4 1R1

Score = 1,471

Shifts = 2,358,064

Figure 3: High scoring five-state machines discovered by G. Uhing.

occur at k = 6, but such magnitudes as have now been produced for k = 5
had never been anticipated. Any hope for solving the problem at this level
will require computer programs endowed with a level of intelligence that we
have not seen in anything done previously by a machine. Can it be decided
by a computer program or will it be necessary to assign one mathematician
per unresolved five-state Turing Machine?

The Smallest Universal Machine

If a particular Turing machine is a Universal Machine then we know there
is no (computable) solution to its halting problem for arbitrary input tapes.
With respect to saying whether or not a given machine is universal we can
only assert that the machine is not universal if the halting question can be
decided for any input tape. It essentially requires another machine (i.e.,
a computer program) which will examine the tape and return the correct
“yes” or “no” answer in every case. But going from blank input tapes to
arbitrary input tapes is a giant step. This has not yet been done for the
set of two-symbol three-state machines (which, without eliminating trivial
cases or any sort of symmetry, number nearly two million). Where in the
space of m-symbol by n-state Turing machines might the smallest Universal
Machine reside? Perhaps results for the Busy Beaver Game could give us
some clues as to where the complex machines lie.

The Busy Beaver Game is naturally open to variations, and the m-symbol
by n-state version is one of them. The traditional scoring rule is that only
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one symbol other than blank must appear on the final tape (Lee 1963). This
is obviously an arbitrary rule, and it may give us no clue as to when a
machine stops. If the maximum shift number is known the matter is moot,
and it is really the shift number in the end that counts. Some might argue
that the range of tape excursion is the true measure of complexity. But, it is
not practical to approach the problem from this standpoint, for a machine
which will never stop can spend a very long time inside a restricted region.
(The three-state Counter machine in Figure 2(a) if left running on a 40
square tape will illustrate this point.) So, it will be the shift number in the
end which we deal with in deciding whether or not a particular machine
will ever halt while we are watching it run.

On the assumption that the shift number represents a kind of recursive
strength of a machine, we have tabulated values1 involving 5(m,n) for con¬
sideration (Figure 4). Along the diagonal running up to the right from (2,5)
to (5,2) the author has no values to supply aside from that of Uhing’s for
5(5) = 5(2,5). The 3x4 and 4x3 machine spaces are apparently orders
of magnitude larger than the 2 x 5 and 5x2 spaces. One might expect to
see results at least comparable to that of 5(2,5). The 3x3 space (with “?”
entered) appears to be of an order somewhere between the sizes of 2 x 5 and
2x4. Because it is probably at least an order of magnitude greater than
2x4 (the 2x5 space is nearly three orders of magnitude greater than that
of the 2 x 4) no attempt has been made to supply any value.

m (symbols)

2 3 4 5

n (states) 2

3

4

5

= 6 >38 >7, 195

= 21 ?

= 107

> 2,358,064

Figure 4. The maximum shift number S for m-symbol by n-state machines.

1 Except for the values for k = 5 discovered by Uhing, all lower bound values shown in

the paper were produced by computer programs written by the author utilizing a recursive
technique involving backtracking to generate distinct machines. While improvements on

some of these results no doubt exist, none are known to the author.
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The state-symbol product as a rule for conservation of computing power
seems to hold across the diagonal from 2 x 3 to 3 x 2. There it is possible

to say that either 5(3,2) = 38 or else 5(3,2) > 15,000, and since there are

fewer than 3,000 of the 3x2 machines to deal with it seems safe to conclude
that 5(3,2) = 38. (Someone may well already know this to be a fact — the

author does not, but it appears that it should not be too difficult to prove.)
However, what has happened to the conservation rule going across the

diagonal where 5(2,4) = 106 and 5(4,2) > 7,195? (It can be stated that
either 5(4,2) = 7,195 or else 5(4,2) > 15,000, although in this case settling
for the equality does not seem like a safe bet.) There were almost 400,000
machines generated which is about two thirds the number of machines gen¬
erated for the 2x4 Busy Beaver problem, but seeing a lower bound for the
shift number nearly two orders of magnitude larger than the known value
of 5(2,4) we cannot offhandedly say that the two problems are comparable!

Does a universal machine lie anywhere in this matrix? If the shift num¬
ber indicating relative recursive strength is a gauge of machine complexity,
then it would seem a reasonable guess that universal machines should exist
in the machine spaces along the diagonal from (2,5) to (5,2). And what
about (4,2)? Why does it appear that there is a significant gain in power
from using four symbols? Does Nature know this already? The four-symbol
by two-state machine space deserves careful scrutiny.

3. Cellular Automata Problems

Games in Linear Cell Space

A cellular automata problem equivalent to the Busy Beaver Game was stud¬
ied by Varshavsky (1972) in a linear cell space. An infinite chain of n-state
cells all begin in the quiescent state except for one nonquiescent cell which
serves as a seed. A cell is taken to be a finite state automaton whose state
transition is dependent upon the states of the cells in a three cell neighbor¬
hood consisting of itself and the immediately adjacent cells. For fixed value
of n Varshavsky wished to determine what is the maximum length L of ac¬
tive cells possible out of which no further growth of activity may occur in
the chain. Varshavsky added the rule that once a cell leaves the quiescent
state it must remain active thereafter. The states were therefore numbered
0, 1, . . . n.

This question ranges over all possible transition tables for the cells, a
set of functions in number of the order of n^f Varshavsky reported, “By
completely enumerating all possible tables of transition rules it has been
shown that for n = 3, the maximal length L( 3) = 7. For n = 4 transition
rules have been found giving L(n) = 45 but this length has not been shown to
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be maximal”. No other information was given on how the “enumeration”
was performed, nor in particular exactly how it was determined whether
or not a chain of cells becomes stable. For n - 3 one is dealing with 327
possible transition functions, though in generating the possibilities from a
tree of next-state choices and eliminating symmetry in the process one can
readily see how the number of possibilities could be greatly reduced.

Vitanyi 1976, considering Varshavsky’s problem, restricted the flow of
information in the chain to one direction, and with a definition of what
he called a one directional linear cell space (1 LCS), demonstrated that
his space defined a Tag system from which it could be deduced that L(n)
diagonalizes the computable functions. But, as Vitanyi points out at the
end of his paper, the problem is directly “equivalent to the halting problem
for Turing machines by encoding the finite control and the scanned symbol
in each cell of the linear cell space”.

So, how does one reconcile the flow of information in only one direction
with a construction embedding the encoding of a Turing machine in each
cell when a Turing machine requires information to flow in both directions?
A constructive solution to this is possible. On alternate cycles let the entire
state space shift to the right. (Every cell takes on the state of its left neigh¬
bor.) Then, a “left” move by the simulated Turing machine can be executed
by allowing the active cell location representing the machine’s position to
“stand still” as the “tape” moves by. A “right” move is executed during
a nonshift cycle by letting this active cell location make its actual move to
the right. In a sense the embedded machines operate in an “expanding uni¬
verse” of active cells. In his monograph on cellular automata Codd (1968)
conjectured “that the existence of unbounded but boundable propagation is
a necessary condition for computation universality” in a cellular space. One
could interpret the simple construction we have presented here as a means
for making a demonstration to the contrary.

The problem of determining L(n) for n = 4 appears to be out of reach
since the possible number of transition functions climbs to 464. This rep¬
resents a rather large space to search. On the other hand, a five cell neigh¬
borhood with two-state cells has an interesting 232. Adding Vitanyi’s re¬
striction of the cell space to unidirectional information flow, there would be
n(n2) transition functions with a three cell neighborhood, which is only 39

for n = 3 and the possible 232 for n = 4.

Two Dimensions: The Game of Life

The Game of Life devised by J.H. Conway has had such a run of popularity
since its introduction in 1970 that it nearly represents a small industry from
magazine articles to books to computer software. It was introduced to the
public by Martin Gardner in his Mathematical Recreations column in Scien-
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tific American (cf. Berlekamp, Conway, and Guy 1982 and Gardner 1983).
It has stimulated both philosophical commentary and science fiction and
possesses an entertaining and virtually unending taxonomy of cellular phe¬
nomena, containing such combinations as “blinkers”, “beehives”, “boats”,
“pulsars”, “gliders”, and even a “Cheshire cat”.

The rules for the game were devised after a certain amount of experimen¬
tation. It has a fascinating biological naturalness. Two-state cells (“dead” or
“alive”) occupy an infinite two-dimensional rectangular space in which only
a finite number of cells are initially in the living state. A birth (transition
from dead to alive) occurs in a cell at the center of nine squares only if
exactly three live neighbors are present. Isolated living cells with no more
than one live neighbor will die, and crowded cells with four or more live
neighbors will die. Living cells with two or three neighbors will survive.

Conway studied many initial configurations and originally thought that
all finite initial patterns eventually degenerated into stable or oscillating
patterns (Figure 5) or else disappeared entirely. He offered a $50 prize for
anyone finding a pattern which would grow without bound. Such patterns
were discovered and led to the creation of an entire system of patterns which
could be used to simulate a computer. In other words, with a particular
encoding of its cell space, Life becomes a Universal Turing Machine!

In the nine cell Life neighborhood there are 2512 possible transition func¬
tions (encompassing as well all 28 possible neighborhoods involving imme¬
diately adjacent cells). Can Conway’s Life be the only interesting function?
For example, admitting anisotropic transition functions leads to the pos¬
sibility of directly simulating simple neural nets. Naturally, Life already
supports neural nets as a programming layer on top of its simulated com¬
puting machine, but the issue here is examination of simple mechanisms
functioning directly in a cellular space.

What about the two-dimensional equivalent to Varshavsky’s L(n)? We
have pointed out that the transition space for n = 2 has 2512 possibilities.
It is difficult to imagine the problem ever being solved for n = 2, at least
not by any exhaustive enumeration. It would seem to require a theoretical
solution.

A cellular universe as an infinite collection of active devices lacks the
intuitive appeal of a Turing machine with its infinitely extensible passive
medium. However, by restricting the nonquiescent cells to a finite number
the two systems are seen to be equivalent. Still, in a very small region of
cells with a only a few states little is known which enables us to predict
their behavior. These frontiers of Life have barely been explored. It is easy
to view anyone’s interest in this area as a frivolous preoccupation, because
it is difficult to admit that the problems in a simple and seemingly natural
domain vastly exceed our present mathematical understanding.
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o o

o o

Figure 5. Simple cellular examples in Conway’s Game of Life.

4. The Busy-Beaver Game in Two Dimensions

Simulation of Life

If a Turing machine is able to operate in two-dimensions (on a rectangular
grid) it is a straightforward matter to design one to simulate the Game of
Life. For instance, position the Turing machine in the exact center of a large
square border surrounding the active Life cells (Figure 6) where it proceeds
in a spiral fashion from the center toward the border leaving a trail as it
moves. On the outward pass the Turing machine temporarily marks all
those cells which will give birth and also marks all the cells which will die.
If any cells give birth while the machine moves around the quiescent cells
comprising the border itself, the Turing machine expands the border in all
directions by one layer of cells. After completing its trip out to the border,
the machine spirals back toward the center marking the new cells as living,
deleting the dead cells, and cleaning up its trail. From the center the Turing
machine repeats the process for the next cell transition.

Our Turing machine equivalent to the usual Life simulating computer
program accommodates Life’s hypothetical infinite grid. Since this machine
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Figure 6. Life simulation by a Turing machine.

will never halt, it can be very simply stated that Life is a runaway Turing

machine!
How does one retain Universality when a Turing machine is constrained

never to halt? The simple Turing machine just described is a Universal
Machine. It simulates Life, and Life is Universal. The matter of halting
comes directly from Conway’s original question regarding the stability of
Life configurations. We equivalently ask whether or not the border will
ever stop expanding. This entire described system (infinite Life grid and
simulating Turing machine) can itself be simulated by a Turing machine on
its own one-dimensional infinite tape. So the question of border expansion
can be tied to the halting problem for the machine with the tape: it merely
stops if it has to wait too long for the border to expand. This is not practical,
but it is theoretically possible since having enough time to wait is no more
of a problem for a Turing machine than having enough tape.

“Turning” Machines

Moving Turing machines into the two-dimensional domain of Life does
nothing to enhance their ultimate computational power. Turing reduced the
computing problem from two dimensions to one dimension in the first place
in order to get at the simple essence of computer mechanism. However, if
we limit ourselves to small machines of approximately the same size, it is
reasonable to wonder what degree of recursive strength might be added by
removing the one-dimension restriction.

Rather than add the obvious extensions of “Up” and “Down” to “Left”

and “Right” why not allow a machine to turn as well as move? Let Left,

Right, and Back reorient the machine at the same time it moves, while

Forward takes it straight ahead. This sacrifices a sense of direction in the
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external world, but the added power is immediately significant: the Busy
Beaver Game improves for one state with a score of 4 in 5 shifts. At the
risk of breathing new life into an old typographic virus, we shall call these
enhanced devices “TurNing” machines. (The ones that never stop can be
referred to as “TOuring” machines!)

There is a crystalline flavor in the output of TurNing machines with two
states (as one might suspect), and over the machine configuration space of
little more than 700 machines there is a likely maximum shift number of
121 and a likely highest score of 37. (The computer enumeration process
was restricted to 2,000 moves and machines which fell off the “edge of the
earth” 100 squares wide were assumed never to halt.)

An interesting simplification of these machines is obtained by restricting
their action to a triangular grid. In the sort of Chinese checkers space which
results, very small machines seem to find a natural environment where they
can spin elaborate webs as they spiral through this simple world. Upon
entering a triangular cell through the base, a machine will have the choice
of moving through the side on its Right, the side on its Left, or Back through
the side it entered (reversing direction). The side penetrated becomes the
new base. Both the score and shift number improve immediately: a one
state machine can turn through six cells! (See Figure 7.)

(state) 1

(symbol)

0 1

1 R 1 1 R 0

1 1

1 1

Score = 4

Shifts = 5

(square cells)

Score = 6

Shifts = 6

(triangular cells)

Figure 7. A one-state “TurNing” machine.

Among 356 two-state triangular machines examined (which should ex¬
haust the possible configurations) the maximum shift number found was
171, achieved by a machine which also visited the most cells, a total of 62
(Figure 8). A different machine achieved the highest score of 39. If these
are not the maximum values then the shift number probably exceeds 2,000.
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Shifts = 171, Cells visited = 62, Score = 27

Figure 8. A high scoring two-state machine in two dimensions.

The number of distinct three-state machines for the game remains quite
manageable. Among more than 9 1,000 machines of the triangular version
inspected the highest shift number found was 1,721 and the highest score en¬
countered was 351. Since no machines were watched beyond 2,000 moves,
it is not reasonable to predict that either the maximum shift number or the
maximum score has been found. It is entirely possible that there are more
machines to be inspected, for the generation tree was trimmed on the as¬
sumption that any machine which continued past 2,000 moves or reached
the edge of a space 50 cells wide did not halt. (It is also possible but not
likely that there are more than 356 two-state machines in the previous tree).

The recursive strength of these machines grows rapidly as can be seen
from the results of computer runs tabulated in Figure 9. A comparison of
the shift number values among the various cases in both one and two di¬
mensions suggests that an attempt to solve the halting problems here would
encounter a much higher degree of difficulty than that handled by Brady
1983 for a final proof that £(4) = 13. At least the number of machines to
handle would not be unreasonable.

The effect of the addition of more symbols to two-dimensional machines
was not examined. A four-symbol by two-state TurNing Machine might well
surprise us in its complexity!
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Triangle cells Square cells

S(k) m) S(k) Uk)

states k = 1 = 7 = 6 = 5 = 4

2 > 171 > 39 > 121 > 37

3 > 1,721 > 351 ? ?

Figure 9. Busy Beaver results in two dimensions: “TurNing” machines.

5. Conclusion

To the more pragmatically minded the Universal Computing Machine is
represented on a silicon slate using nor-gates for chalk. The minimal ma¬
chine in this view is a single nor-gate. It is perhaps just another way of
saying that as the number of states is reduced the complexity of the encod¬
ing is increased, and in an infinite gate array there is really no distinction
between the finite-state machine and its tape. This is not a satisfying view,
however. It begs the question.

At another level in the practical world we would experiment with con¬
fidence on the 25,000 node neural net representing a snail’s brain, or snip
off a piece of a chromosome and admire the effect on the offspring of the
altered cell. We do this without admitting the limitations of our knowl¬
edge of the underlying mechanisms. It is not to say that experimentation
is wrong — on the contrary, we have emphasized a problem area involving
simple mechanisms wherein we would strongly encourage experimentation.
But, we will plead at the same time for more humility on the part of those
who are wont to experiment at the high range of the scale.

We have seen how some relatively simple variations in very small mecha¬
nisms can have disproportionate and possibly unanticipated effects on their
recursive power. How this comes about is not at all clear. Expansion (adding
states or symbols) ultimately yields universality in a form which we are able
to program in ways consistent with our experience. So, in a strict logi¬
cal sense, the changes offer nothing new. Nature, however, may have its
own methods of programming. Not only should we study the automata
mentioned here, but we should be considering many other variations as
well. The experience gained could lead to the practical discovery of parallel
mechanisms active in natural phenomena. And, furthermore, the mecha¬
nized proofs required for rigorous solutions to these problems will give us
a sense of the degree to which we can honestly and realistically apply the
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modifier artificial to the term intelligence ?
Our concluding perspective will be summarized in the following con¬

jectures and predictions proceeding from machines with just one state to

machines with six.
Conjecture 1. There exists a one-state Universal Machine which operates

in two dimensions (i.e., a one-state “TuRning” machine).
Likelihood that this conjecture will be proved: Fair - Nature has proba¬

bly already proved it, but with time on its side.
Conjecture 2. There does not exist a two-symbol by two-state Universal

Machine if halt entries are excluded.
Likelihood that this conjecture will be proved: Good, but the charac¬

terization of “looping” as a substitution for halting may be an open-ended
matter. Halting is useful to make a theoretical point, but in real life survival
is the tautological goal. And we no longer build computers which halt — at
most they wait in a quiescent state. In any case, solving this problem would
be good practice for attacking the following.

Conjecture 3. The halting problem for two-symbol by three-state Turing
machines is decidable.

Likelihood that this conjecture will ever be proved: Fair, but this is an
extremely challenging problem. Let anyone in doubt pick some machines
and try it!

Conjecture 4. There exists a two-symbol by four-state Universal Machine
if halt entries are excluded. (This is prompted by intuition bolstered by the
fact that with four states it is possible to send two signals in each of two
directions, and by excluding halt entries some of the recursive strength of
the five-state space is assumed.)

Likelihood that this conjecture will ever be disproved: Nil.

Prediction 5. It will never be proved that E(5) = 1,915 and 5(5) =
2, 358, 064. (Or, if any larger lower bounds are ever found, the new values
may be substituted into the prediction.)

Reason: Nature has probably embedded among the five-state holdout
machines one or more problems as illusive as the Goldbach Conjecture. Or,
in other terms, there will likely be nonstopping recursive patterns which are
beyond our powers of recognition.

Prediction 6. From known results for k = 5 a six-state machine will be

constructed for which it can be “proved” that its shift number (and thus a

lower bound for 5(6)) is an incomprehensibly large value which is in itself

difficult to describe.

2 House and Rado 1963 proposed the study of small Turing machines as a relevant endeavor
for the then infant specialty of artificial intelligence. They pointed out the theoretical and
practical difficulties for problems such as automated searches for optimal machines.
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Reason: It is now clear that determining £(6) and 5(6) is intractable. At
this level one can speculate with impunity, and we shall.

Some students of the author were readily convinced after extensive ex¬
amination and computer testing that Uhing’s champion machine for 5(5)
would never halt. Seeking assurance one student ran her simulator to a
point just short of two million moves! From an amusing experience such
as this, one is led to consider the possibility that someday a machine of six
states (or a just a few more) will be presented by a group of mathematicians
along with a “proof’ that it will never halt. Suppose then an efficient sim¬
ulator for the machine were built on the leading but slightly jagged edge of
technology and run for an extensive period of time. And then suppose it
were to halt! The mathematicians, with solid reasoning to back them up,
could make a valid claim that the machine malfunctioned.

But now suppose that instead of building a machine, another group of
equivalently qualified thinkers, supported by a great body of mathematical
knowledge, countered with a different “proof’ that after some unimaginable
number of moves the proposed machine would in fact halt. Their number
would be so large that building a simulator to check the result would be
inconceivable. What then? (It is only speculation, of course!)

For k = 6 the problem transcends mechanism. One reaches a point where
it becomes impossible to distinguish between the finite and the infinite. Is
there a point at which it will transcend logic? Rado’s question remains open.
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