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ABSTRACT

Consider a binary alphabet Turing Machine which is given an infinite, blank tape as input.

If this machine halts, we define its productivity as the number of 1’s left on the tape after

the machine is run to completion. If it does not halt, the machine is given a productivity

value of zero. Now consider all of the binary alphabet Turing Machines that have n states.

The machine in this set which has the highest productivity is called a Busy Beaver, and

its productivity is the result of the Busy Beaver function Σ(n).

This function, originally formulated by Tibor Rado (1963), has become a classical

focus in computer science theory as well as research in the nature of computability. Rado

(1963) proves that this function is not “computable” in the context that Turing (1936)

defines the word. In other words, no Turing machine exists that can definitively solve

Σ(n) for any arbitrary input n. Regardless, the problem has been attacked on many levels

by many different groups in attempts to determine the value Σ(n) for small values of n.

Thus in this thesis, we present our own assault on the Busy Beaver function. How-

ever, not only do we employ computational techniques as they are defined by Turing in

our attack, but we also appeal to certain abilities of the human mind which are grounded

in hypercomputational processes of the physical world. Specifically, we breathe substance

into the claim that the human visual reasoning system possesses computational powers

beyond the Turing limit, and these powers can be employed in efforts to solve Σ(n). As a

result, while the Busy Beaver function is proven to be non-Turing-computable, our efforts

suggest hope that it is still computable by the fantastic capabilities of the human mind.

Our multi-layered assault is thus structured as follows: The core of the attack is

built off of ingenuous previous efforts by Kyle Ross (2003). In his work, he incorporates

tree normalization optimization techniques to greatly reduce the search space of the set of

n-state machines in the Σ(n) problem. With this core in place, we incorporate automated

non-halt detection mechanisms to certify whether or not machines in this search space

halt. The final layer in the attack requires a direct appeal to the human visual reasoning

system mentioned above to confirm that the final set of machines do not halt.

Thus the result is that Σ(1) through Σ(5) are confirmed and a foundation is in place

for a continued march upwards. Most importantly, though, is that we break the bounds

of Turing-computation, and place the assault on Σ(n) into the hypercomputable realm.
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CHAPTER 1

Introduction

1.1 Turing, Rado, and the Busy Beaver Problem

Alan Turing is considered by many to be the founder of computer science and

computability theory. His Turing machines (Turing 1936)1 are accepted by many as the

basis of all computation. In fact, he suggests a form of this notion in (Turing 1969):

It is found in practice that L.C.Ms [Turing referred to his Turing machines as “Logical
Computing Machines” or L.C.Ms. Present day reference to them as Turing machines
suitably use his namesake] can do anything that could be described as ’rule of thumb’
or ’purely mechanical’. This is sufficiently well established that it is now agreed
amongst logicians that ’calculable by means of an L.C.M.’ is the correct accurate
rendering of such phrases.

What he refers to here as “rule of thumb” or “purely mechanical” is generally accepted

to mean anything that is algorithmic. This concept is solidified in (Copeland 2000):

A method, or procedure, M, for achieving some desired result is called ’effective’ or
’mechanical’ just in case

1. M is set out in terms of a finite number of exact instructions (each instruction
being expressed by means of a finite number of symbols);

2. M will, if carried out without error, always produce the desired result in a finite
number of steps;

3. M can (in practice or in principle) be carried out by a human being unaided by
any machinery save paper and pencil;

4. M demands no insight or ingenuity on the part of the human being carrying it
out.

Thus Turing’s claim above suggests that anything that is algorithmic or “mechanical” in

this sense can be simulated by some Turing machine.

Incidentally, Alonzo Church, working independently from Turing at the time, makes

a similar claim in (Church 1936) regarding his lambda calculus. While he does not refer-

ence Turing machines in his work, it is later shown that the lambda calculus is equivalent

in expressive power to Turing machines. Thus their combined generalized claim has since

become known as the Church-Turing Thesis. What is interesting about this thesis is that

it allows Turing to establish a concrete definition of what is “computable.”2 In short, a

1Briefly, a Turing machine is a model of computation that operates on an infinite tape of symbols. There
is a read head that moves back and forth across the tape, transforming the symbols that it encounters
according to a set of rules defined for that particular machine. We shall describe the structure and operation
of Turing machines in more intimate detail in section 2.1.

2Clearly the thesis allows Church to make the same conclusions but it is Turing that pursues this notion
in conjunction with his Turing machines.

1
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“computable” number is one whose digits can be generated by some Turing machine3 and

any computable process is one that, again, can be simulated by some Turing machine.

Armed with this concept of “computability,” Turing introduces this well defined and

intuitive-to-understand procedure: Given a Turing machine M , and a corresponding input

tape t, determine whether or not M halts when it is run on t.4 This is famously referred to

as the Halting Problem. Turing (1936) proves that such a procedure is not “computable”

by showing that it is not possible for a Turing machine to exist that effectively gives an

answer for any arbitrary input of M and t.

It is this initial work by Turing and his concept of “computable” that has served as

a springboard for the basis of computability theory in computer science. To expand upon

this notion further, this definition of “computable” can be extrapolated to encapsulate

the nature of a “computable” function:

• A function f can be defined as a mapping such that for every whole number n, there

is a corresponding value f(n) associated with it.

• A “computable” function is one for which there is some algorithmic or “mechanical”

procedure such that given a number n as input, it outputs f(n) for any n.

• As we have already seen, any algorithmic or mechanical procedure can be simulated

by some Turing machine.

• Therefore, a “computable” function is one for which there is a Turing machine such

that given some representation of the input n on its tape, it performs some set of

operations and then halts with some representation of f(n) on its tape.

As can be seen, the halting problem as described by Turing does not easily fit into

this paradigm since it does not take a number n as input but instead a representation of a

Turing machine and input tape. Thus, Rado (1963) presents a true function in the sense

that we have defined that is directly related to the halting problem. He calls it the Busy

Beaver function and we summarize it as follows:

3Note that this definition does not exclude real numbers with an infinite sequence of digits after a
decimal point such as π. A Turing machine can be constructed to simply “churn out” the digits of such
numbers indefinitely.

4It should be noted here that Turing (1936) also introduces the concept of a Universal Turing Machine.
Essentially, he shows that there exists a Turing machine that can be given a representational encoding of
any Turing machine along with some representation of an input tape and it will simulate the operation of
the given machine when run on the given input tape. Such a machine is called a Universal Turing Machine.
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Consider a binary alphabet Turing Machine which is given an infinite, blank

tape as input. If this machine halts, we define its productivity as the number

of 1’s left on the tape after the machine is run to completion. If it does not

halt, the machine is given a productivity value of zero. Now consider all of the

binary alphabet Turing Machines that have n states. The machine in this set

which has the highest productivity is called a Busy Beaver, and its productivity

is the result of the Busy Beaver function Σ(n).

Thus the Busy Beaver function takes as input a number n and returns the productivity of

the most productive n-state machine. This function is very clearly defined but it is also

relatively easy to show that it is not “computable” in the sense that Turing has defined

it. In other words, no Turing machine exists that can take as input n and output what

we shall refer to as Σ(n).5

1.2 Computable vs. Turing-computable

Up to this point, the reader may be somewhat fascinated by the history of Turing

machines, “computability,” and how Rado’s Σ(n) function grew out of these concepts.

However, there may be some confusion as to where this story is heading. Notice, then, the

perhaps curious notation that we have been using thus far for each appearance of the word

computable, computability, or some other related derivative. We have been including these

words in quotation marks, perhaps suggestive that we are apprehensive about accepting

the notion that Turing machines encapsulate all things that are truly computable.

It turns out that this is the case. Interestingly enough, however, it is pointed out in

(Wegner & Goldin 2003) that Turing, himself, may have held these same concerns:

Turing implied in his 1936 paper that Turing machines (which he called automatic
machines, or a-machines) could not provide a complete model for all forms of com-
putation, just as they could not provide a model for all forms of mathematics. He
defined c-machines (choice machines) as an alternative model of computation, which
added interactive choice as a form of computation; later, he also defined u-machines
(unorganized machines) as another alternative that modeled the brain.

Thus, even though Turing defines “computable” as a concept that is directly connected to

the power of Turing machines, he appears to concede the possibility that Turing machines

do not encapsulate everything that is truly computable in the physical world. In other

words, all things “computable,” as defined by Turing, can be simulated by some Turing

5We shall explore the specifics and variations of the Busy Beaver function in greater depths in section 2.2
as well as reference a proof of its “uncomputability” in section 2.3.1.
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machine. However, it is not clear whether all processes realizable in the physical world are

in fact “computable” in the sense that they too can be simulated by some Turing machine.

It is therefore with this question in mind that we launch our assault on an already

mentioned non-Turing-computable6 function: Rado’s Busy Beaver function. Specifically,

we illuminate evidence that the physical world and consequently the human mind is, in

fact, grounded in physical processes that are not Turing-computable. Therefore while the

Busy Beaver function is not Turing-computable, it may yet be computable by even more

powerful computational machines: humans. The outline of our attack is thus described in

the next section.

1.3 Outline of the Attack

Before we flesh out our strategy, it is important to recognize the connection between

the Busy Beaver function and the Halting problem mentioned above. Consider the set of

n-state Turing machines that Σ(n) directly inquires. This set is a finite, enumerable set.7

Therefore, if the Halting problem was computable, we could easily construct a solution to

Σ(n):

(1) For each machine in the set of n-state machines, determine whether or not it halts.

[This is the application of the halting problem and the crucial step]

(2) If the machine does not halt, discard it since all non-halters have a productivity of

0 according to the definition of Σ(n).

(3) If the machine halts, run it to completion and note the number of 1’s that are left

on the tape. This value is the machine’s productivity.8

(4) Return the productivity of the most productive machine.

While it is a brute fact that the Halting problem is not Turing-computable, it is

trivial to show to that it can be partially solved by Turing machines. In other words, we

6Herein we shall refer to Turing’s concept of “computable” as Turing-computable. We shall reserve
the word computable to mean anything that is computable in the physical world. There are hypothetical
computational machines that compute functions above the Turing-limit [i.e. Zeus machines (Boolos &
Jeffrey 1989) to name one of many]. However, these machines defy physical possibility and thus are not
included in our definition of computable.

7We shall present an effective procedure for enumerating this set in section 4.1
8It should be noted that there are several variations of the Busy Beaver function that specify certain

requirements for the arrangement and pattern of the 1’s on the tape after the machine has halted. We
shall illuminate these variations in section 2.2. At this point, however, we need not be concerned with such
details.
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Figure 1.1: Computability Conceptualization

can construct a Turing machine that either definitively says “Yes the machine will not

halt” or “I am not sure if the machine will halt or not.”9 Now let us consider the diagram

shown in figure 1.1. Assume, for argument’s sake, that the outer box represents the set

of all Turing machines.10 Now let us also consider a Turing machine which represents the

best partial solution to the Halting problem. The area of the outer box below the line

labeled “Turing-computable” is the set of all Turing machines that this Turing machine

can decide. One of the core claims that we defend in this thesis is that the line labeled

“Human-computable” is above the Turing-computable line. In other words, no Turing

machine can encapsulate all methods of reasoning available to humans to reason about

whether Turing machines do not halt. Therefore, there are some Turing machines that a

human can prove will never halt, but some effective, Turing-computable procedure cannot.

Thus with this foundational argument in place, we are now ready to present our far

reaching assault on the Busy Beaver function:

A1 While much of the groundwork has already been presented thus far, there are still

9See section 2.3.3 for a trivial proof of concept partial solution to the Halting problem.
10We realize that this is an infinite set and thus our figure may not be graphically accurate but this is

not important to the context of our argument.
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significant details about Turing machines and the Busy Beaver function that must be

illuminated. Therefore, in chapter 2, we give a more thorough description of Turing

machines in general and the specifics of the Busy Beaver function, its variations, and

previous assaults that have been made. We also elaborate on our proposed attack

procedure that we have already briefly described above.

A2 Building off of ideas originally pioneered by Roger Penrose (1989, 1994), the core of

our argument is that humans possess capabilities beyond that of Turing machines

and can specifically harness these capabilities to reason about the non-haltingness of

Turing machines. Thus in chapter 3, we defend Penrose’s claims in direct support of

our Busy Beaver assault. Additionally, refer once again to figure 1.1. Notice that we

annotate the segment above Turing-computable and below Human-computable as

being the result of diagrammatic reasoning. An additional intent in this chapter is to

ground humans’ ability to reason above the Turing-limit in visual cognitive processes.

The anchoring argument here is that visual reasoning and symbolic reasoning are

independent processes that cannot be reduced to each other (Bringsjord & Bringsjord

1996, Barwise & Etchemendy 1995). Therefore, since Turing machines are purely

symbolic, visual reasoning processes are non-Turing-computable.

A3 Chapter 4 encapsulates our direct attack on the Busy Beaver function itself. The

core strategy involves iteratively generating a partial solution to the Halting problem

as mentioned above. While this partial solution is a Turing-computable procedure,

it only allows us to confirm the value of Σ(n) up through n = 4. For n = 5, we

are left with a set of 98 machines that our partial solution answers “I am not sure

if the machine will halt or not.” It is for these 98 machines that we must appeal

to human diagrammatic reasoning processes mentioned above to confirm that they

are in fact non-halters. Thus our bold claim is that we have “cracked” Σ(5) by

human-computable means that lie above the Turing limit.

A4 In a speculative segment, chapter 5, we address further lines of research that our

work has laid a foundation for. Most notable, of course, is the upward push to

confirm values of Σ(n) for n = 6, 7, and beyond. However, since our assault directly

references diagrammatic reasoning processes employed by humans, our research also

provides a test bed for further studies in the complexities of the human visual rea-

soning system. Additionally, our work has important considerations for studies in
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discovering truly hypercomputational processes in nature. Perhaps most intrigu-

ing, though, is the quest to push the “Human-computable” line even further up the

diagram in figure 1.1. While our work only places it somewhere above the Turing-

computable line, if it can be established to lie above all Turing machines, then the

possibility that the Busy Beaver function is in fact computable still remains.

It should be noted that while we present convincing evidence for human hypercomputa-

tional powers, we realize that some readers may still be resistant to accepting our claims.

It should appease those readers, though, that it is undisputable from our presentation that

further progress on the Busy Beaver function has been and will continue to be made via

Turing-computational mechanisms. So without further delay, we now proceed with our

multi-faceted attack on the Busy Beaver problem.



CHAPTER 2

Laying the Groundwork

2.1 Turing Machine Formalization

As a precursor to our attack, let us first present a more rigorous definition of the

makeup and operation of Turing machines that are briefly described in the preceding

chapter.11 As it is defined by Turing, a Turing machine contains a two-way infinite tape.

The tape consists of a sequence of symbols and at any one point in time, one of the

symbols is considered to be under the “read-write head” of the machine. Thus consider

the tape shown in figure 2.1. In this figure, the read-write head is denoted with a darkened

box around the symbol as well as an arrow above the box for clarity. Thus the machine

associated with this tape is said to be reading a 0 (the current symbol under the read-write

head) on the tape.

Figure 2.1: Example Turing Machine Tape

In addition to a tape, a machine is also comprised of a set of rules that govern the

movement and operation of the read-write head along the tape. Conceptually, these rules

can be broken down into two distinct components:

1. A Turing machine consists of a finite set of states. At any one point in time during

its execution, a Turing machine is considered to be “in” one of these states. It

is important to note that a state can be designated a halting state. If a Turing

machine ever enters a state designated as a halting state during its execution, then

it intuitively halts.

2. A set of transitions define specific actions to be taken according to the current state

of the Turing machine as well as the current symbol under the read-write head of

the tape. Each action consists of three parts:

(a) Write a new symbol at the current read-write head of the tape.

11See (Révész 1983, Linz 1997, Fischer 1965, Ross 2003) for a considerably more thorough discussion of
Turing machine formalizations.

8
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(b) Move the read-write head one position either to the left or to the right.

(c) Designate a new state that the Turing machine is currently “in.”

Thus a Turing machine, governed by the rules of its state and transition sets, manipulates

its tape with a read-write head until it either enters a halting state or it enters a state for

which there is no transition defined for the current symbol under the read-write head.

start 0

0:1,R

1

1:0,R

1:1,R

2

0:1,L

1:0,L

Figure 2.2: Turing Machine Example

Let us now further conceptualize these machines with an example. Consider the

flow diagram shown in figure 2.2. The circles in this diagram represent the states of the

machine. Each arrow that connects two states represents a transition where the notation

of the transition is [r] : [w], [m] where r is the current symbol under the read-write head, w

is the new symbol to be written to the tape, and m is the direction to move the read-write

head (one of {L,R} for left and right respectively). Thus consider the situation where this

machine is in state 0 and is operating on the tape shown in figure 2.1. Since the read-write

head is positioned over a 0 on this tape, the machine will act according to the transition

arrow that exits state 0 and has a 0 as the read symbol r in the transition. Therefore, it

will write a 1 on the tape and then move the read-write head one position to the right,

resulting in the new tape configuration shown in figure 2.3. It will subsequently transition

“into” the state in which this transition arrow terminates (which happens to be the same

state 0). Operation continues in this manner until the machine reaches a halt state or a

{state, symbol} pair for which there is no transition defined.12

With a clear picture of how Turing machines function, we can now present a more

formalized definition: For our purposes, a Turing machine is defined by a quadruple

12In the context of our example machine, there are no halt states defined. Therefore, the machine only
halts if it reaches state 2 while reading a 0 under the read-write head since that is the only {state, symbol}
pair for which there is no transition.
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Figure 2.3: Example Tape After Transition

(Q, δ, q0, F ).13 Here Q is a finite set of states, δ is a set of transitions, q0 ∈ Q is the

starting state and F ⊂ Q is the set of states that are designated halting states.

For the definition of Turing machines as we have defined them above, each transition

in δ consists of a quintuple:14 (qc, r, w,m, qn). Here qc represents the current state of the

machine, r represents the current symbol under the read-write head, w is the new symbol

to be written to the tape, m is the direction that the read-write head is to be moved (as

explained above), and qn is the new state that the machine is to transition to.

For our purposes, however, we wish to use a slight modification of δ where in this

case, each transition is a quadruple: (qc, r, a, qn). In this modified definition, the action a

that the machine takes for each transition is one of {0, 1, L,R} where 0 and 1 represent

writing a new symbol under the read-write head and L and R represent moving the read-

write head one position to the left or right respectively. Thus in the quadruple formulation

of Turing machines, each transition can either modify the tape under the read-write head,

or move the read-write head one position, but not both as in the quintuple formulation.

The quadruple formulation formulation first appeared in (Post 1947) and it can be

shown that quadruple formulation Turing machines are equivalent in expressive power to

quintuple formulation machines.15 Herein we only concern ourselves with the quadruple

formulation.

2.2 Busy Beaver problem definition

With a clearer definition of Turing machines established, we can now more formally

define the Busy Beaver function or Σ(n) as it is described in section 1.1. As has already

been mentioned, Rado defines the problem in (Rado 1963). We appeal to a subsequent pa-

per (Lin & Rado 1964) published in conjunction with one of his students for the definition

of the problem as they define it:

13Many formal definitions of Turing machines include the specification of the alphabet that can be used
for characters on the tape. For our purposes, we only consider machines with a binary alphabet of {0, 1}
and thus do not include it in the definition.

14The quintuple formulation of Turing machines follows the original specification as it is described by
Turing.

15See (Ross 2003) for a proof of this concept.
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Consider, for a fixed positive integer n, the class Kn of all the n-card [state] binary
[alphabet] Turing machines . . . Let M be a Turing machine in this class Kn. Start
M , with its card 1 [q0 in our definition], on an all-0 tape. If M stops after a while,
then M is termed a valid entry in the BB-n contest . . . and its score σ(M) is the
number of 1’s remaining on the tape at the time it stops . . . the scores of these valid
entries constitute a nonempty finite set of non-negative integers, and thus this set has
a (unique) largest element which we denote by Σ(n) . . . It is practically trivial that
this function Σ(n) is not general recursive [i.e. is non-Turing-computable]. . . On the
other hand, it may be possible to determine the value of Σ(n) for particular values of
n.

This function is proven to be non-Turing-computable in (Rado 1963). However, this

does not deter us in our assault as we have already suggested in the preceding chapter.

It should also be noted that Lin and Rado define an additional non-Turing-computable

function SH(n):

. . . the determination of the function SH(n) [is] defined as follows. Each valid entry
M in the BB-n contest performs a certain number s(M) of shifts by the time it stops;
the function SH(n) is the maximum of s(M) for all valid entries in the BB-n contest.

As we shall see, this function has important ramifications on the computable nature of

Σ(n).

2.2.1 Variants of the Busy Beaver Problem

With the formal specification of Turing machines as we have described them in sec-

tion 1.1, it easy to see how many variants of the Busy Beaver function could be established

by simply modifying the Turing machine formalization used. Recall that we have already

restricted our Turing machine focus on those that deal explicitly with binary alphabets of

{0, 1}. Considering this restriction, we can further establish eight different formulations

via three different parameters: transition type, halting type, and output restriction type.

2.2.1.1 Transition Type

As is previously discussed in section 2.1, Turing machines are commonly defined

via the quintuple formulation where each construction contains five pieces of information

(current state, current symbol, new state, new symbol, move direction).16 Our attack

focuses instead only on the quadruple formulation of Turing machines.

16Rado’s (1963) original definition of the problem deals with the quintuple formulation of Turing ma-
chines.
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2.2.1.2 Halting Type

Recall from our formalization of Turing machines in section 2.1 that a Turing ma-

chine halts execution when it reaches one of two conditions:

1. It enters a state q ∈ F

2. It enters a state q such that there is no transition in δ for the state q and the current

symbol under the read-write head r.

For the purposes of defining the Busy Beaver function, we split these two halting mecha-

nisms into two distinct categories.

For the explicit halting mechanism, the set of halting states F is required to have

a cardinality of exactly one state. Thus, the machines considered when calculating the

value of Σ(n) for the explicit halt formulation of the problem contain n states plus the

one halt state in F .

Conversely, the implicit halt formulation of the problem requires that F have a

cardinality of exactly zero states. Therefore, no halt states are defined and the machine

can only halt if it encounters a {state, symbol} pair for which there is no transition defined

in δ.

2.2.1.3 Output Restriction Type

One final variable that we concern ourselves with is a certain restriction on the final

configuration of the tape for those machines that have halted. According to Lin and Rado’s

original definition, there is no restriction on this configuration and the 1’s can appear

anywhere on the tape with any pattern. However, typical conventions for interpreting the

output tape of a Turing machine require that the read-write head be positioned at the

left-most of a continuous sequence of 1’s (with no other 1’s on the tape) in order for it

to be a valid output configuration. Therefore, we can redefine the Busy Beaver function

to only consider machines which halt in this standard conventional configuration. All

other halting configurations are thus assigned a productivity of 0. For the purposes of this

paper, we shall refer to the latter formulation as the standard configuration formulation of

the Busy Beaver problem. The original unrestricted version as it is described in Lin and

Rado’s original definition is herein considered the non-standard formulation. (Ross 2003)
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2.2.2 Previous Efforts of Busy Beaver Attacks

It should be noted at this point that our efforts to attack the Busy Beaver function

have been partially motivated by the brilliant work done by Kyle Ross (2003). In fact, it

is his original attack strategy and research in optimization techniques for the Σ(n) search

space that form a foundation for the present research for this paper.17 Thus our focus

for this problem extends his work on the four variants of the quadruple formulation of

the problem as defined above and we cite his definition of these formulations as they are

described in (Ross 2003):

Most previous work on the Busy Beaver problem has dealt with some variant of
the binary alphabet quintuple formulation. There has, however, been some previous
study of several of the quadruple variants. The following summary of that work and
the terminology referring thereto is adapted from (van Heuveln et al n.d.).

• Boolos and Jeffrey (1989) have studied the quadruple, implicit halt, standard
position formulation. It was in part this work that inspired the present research.
Busy Beaver maximal productivity numbers for this formulation will be denoted
B(n) and maximal shift numbers will be denoted b(n).

• A Portuguese group (Pereira, Machado, Costa & Cardoso n.d.) used a combina-
tion of genetic algorithms and hill-climbing techniques to study the quadruple,
explicit halt, standard position variant of the problem. We call this function
P (n) and the associated shift function p(n).

• A German group (Oberschelp, Schmidt-Gottsch & Todt 1988) used probabilistic
reasoning to research the quadruple, implicit halt, non-standard formulation.
We define O(n) and o(n) to represent the productivity and shift champions,
respectively, for this variant.

• The quadruple analogue to Rado’s original problem (quadruple, explicit halt,
non-standard) has not, to our knowledge, been studied previously, but we use
R(n) (for Rado) to denote the productivity champions for this version and r(n)
for the shift champions.

Please note that while we do distinguish between the four variants described above, in

situations where the particular variant is not of particular concern, we may still refer to

the function in general terms such as the Busy Beaver function or Σ(n).

2.3 Difficulty of Problem

2.3.1 Proof of Uncomputability

Before divulging into our proposed search based optimization attack on the Busy

Beaver problem, we wish to first discuss an important property that reveals itself in a

certain variation of a proof of the uncomputability of the function. Let us first consider

the set of all Turing-computable functions that operate on one parameter input value (that

17We should also not that we are indebted to Kyle for allowing us use of his original computer programs
to form the basis of our assault on Σ(n).
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is functions that are computable by some well defined Turing machine which takes as input

some finite sequence of consecutive 1’s on its input tape with the read head positioned at

the leftmost position of these contiguous 1’s). For arguments sake we shall define this set

as set T . In (Miller 2003), Miller shows that the following holds:

∀t∈T (∃n(∀j>n(Σ(j) > t(j))))

In other words, the Busy Beaver function dominates every existing Turing computable

function. We revisit this facet of knowledge later in section 3.1 but at present we leave the

reader to ponder what this ultimately means: No Turing machine can generate a sequence

of numbers for which each number in the sequence is larger than the corresponding value

in an ordered sequence of Busy Beaver values.

2.3.2 Mechanisms of Attack

As is already mentioned, the Busy Beaver problem is non-Turing-computable. Thus,

a generalized Turing-computational mechanism to compute the value of Σ(n) for any

arbitrary n is unattainable. However, it is still possible to determine the value of Σ(n)

for small values of n. This requires a monumental task: a complete and exhaustive search

based attack on the complete state space of Turing machines for each value of n. For

explicit formulations of the problem (P (n) and R(n)), this amounts to a search space size

of (4n+ 4)2n.18

Even for small values of n, examining a set of (4n+4)2n machines requires a massive

amount of computational power even by today’s standards. We shall see in section 4.1

that this search space can be dramatically reduced by incorporating a specialized machine

enumeration strategy. This technique incorporates tree normalization filters that effec-

tively eliminates machines from the search space by proving that they are equivalent to

some other machine in the tree.
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function: Σ(n)

Using a tree normalized approach, enumerate a set S of n-state Turing1

machines that behaviorally represents the entire set of n-state machines
foreach machine t in S do2

Classify t as either a non-halter, or a halter3

if t is a halter then4

Prepare input tape x as an infinite bi-directional tape of all 0’s5

Run t to completion on x resulting in the output tape x′6

if x′ satisfies the conditions specified in section 2.2.1.3 then7

Add t to our candidate set C8

end9

end10

end11

Return the productivity of the most productive machine in C (i.e. the machine12

that produces the most contiguous 1’s on the tape)

Algorithm 1: Proposed solution to Σ(n)

2.3.3 Proposed Algorithm

We are now ready to present the early workings of our proposed solution to the

Busy Beaver problem. Consider the algorithm outlined in Algorithm 1. We would like to

suggest that this qualifies as a valid procedure for calculating values of Σ(n). We cannot

truthfully hope for this to be a Turing-computable procedure, however, considering that

we have already referenced multiple proofs of the non-Turing-computability of the function

(Rado 1963, Miller 2003). Clearly, the suggested procedure in line 3 of our algorithm is the

problem. While we cannot hope to define a Turing-computational algorithm to compute

this task (as this would be a solution to the halting problem below the Turing limit), we

can still strive to prove that a particular machine does not halt on an individual basis by

demonstrating that its behavior follows an infinite, repeatable pattern.

To further clarify this notion, consider the following simple routine R(M,x). R is

given as input some formally defined description of a Turing machine M as well as some

representation of a corresponding tape x which can be fed to machine M as input. Our

routine R outputs either a YES or NO response which are to be interpreted as follows:

18The derivation of this formula from (Ross 2003) is as follows:

. . . there are a total of 2n possible transitions in an n-state binary machine (i.e. 1
per state per read symbol); for each of these, there are 4 possible actions times n+ 1
next states (including n internal states and the halt state). For implicit formulations
(viz. B(n) and O(n)), |M(n)| = (4n+ 1)2n. This formula is like that for the explicit
formulations except that there is only one possible halt transition rather than four.
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• YES: The computation M(x) does not halt

• NO: The computation M(x) may or may not halt

Thus R encapsulates the capability to prove that some behaviorally similar subset of

Turing machines do not halt.

As a trivial example, consider any machine that is given an infinitely blank tape as

its input (analogous to all of the machines with which our definition of the Busy Beaver

problem is concerned). Now consider all of such machines which contain the transition as

denoted by the flow diagram in figure 2.4. When a machine contains this transition, any

0 0:R

Figure 2.4: Trivial Infinite Loop Structure

time that it is in state 0, while reading a 0 on the input tape, the read head is moved to

the right and the machine transitions back to state 0. Thus, if any machine begins with

an infinite tape of all 0’s and the the first state (state 0) contains this transition, then the

machine will clearly never halt. Thus we can very easily embed this detection mechanism

into a routine of the form described for R above. Let us call this routine NH0 that we

consequently describe in Algorithm 2.

function: NH0(M,x)

if x is a non-blank tape then1

return NO2

end3

let t be the transition defined in M for state 0, symbol 0 in4

if t is the transition to move right and go to state 0 then5

return YES6

else return NO7

endlet8

Algorithm 2: Non-Halt Detection algorithm for trivial rightward behavior

Thus we now can begin to see how a formulation of the required routine in line 3 of

Algorithm 1 might be developed. Consider some set of non-halt detection routines such

as NH0 as is already described. The dream properties of such a set would be two-fold:
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1. The set is a recursively enumerable set and thus there exists a machine that generates

the sequence:

NH0, NH1, NH2, NH3, . . .

2. Every Turing machine that does not halt can be demonstrated so by one of the

routines in the set.

While we do not see how this dream could come true19, it still lays a foundation for our

multi-faceted assault on this problem.

19A set that exhibits such properties could easily be used to construct a Turing-computable solution to
the halting problem



CHAPTER 3

Fronts of Attack: Solvability Claims

Before we present our actual attack on the Busy Beaver problem, we wish to suggest the

possibility that the Busy Beaver function could potentially be solved by some mechanisms

within the grasp of human capability. We have already seen in section 2.3.1 that there

does not exist any Turing machine capable of producing a solution to the function for any

arbitrary input n. Thus if there is truth to our suggestion, this would immediately induce

the conclusion that the human mind possesses powers beyond that of a Turing machine.

The goal for this chapter is to breathe substance into this claim.

We begin with an exercise in intuition in section 3.1 by presenting hope for the

possibility that humans possess the ability to enumerate sets that cannot be enumer-

ated by Turing computational mechanisms.20 This exercise serves as a springboard for

a presentation on our stance in the much debated “strong” vs. “weak” AI spectrum

(Searle 1980, Penrose 1994, Bringsjord & Zenzen 2003). In the next section, we prop

up a position taken by Roger Penrose (1989, 1994) which suggests that humans possess

reasoning capabilities beyond that of Turing machines and this capability is specifically

connected to humans’ ability to reason about the non-haltingness of Turing machines. The

third section is a presentation of our own argument that injects this specific human ability

to ascertain whether or not a Turing machine halts into the realm of spatial reasoning and

human diagrammatic reasoning processes. Finally, we encapsulate our arguments into our

computability conjectures about the Busy Beaver problem in section 3.4.

3.1 Human Enumeration Capabilities

3.1.1 Pondering Large Numbers

Let us first revisit an important, proven fact that we have brought to attention in

section 2.3.1. In particular, we are referring to the truth that the Busy Beaver function

dominates every Turing computable function that exists. An easily derived corollary of

this is that SH(n) also dominates every Turing computable function.21 It is easy to see

that this must be so for if it was not, then we could very easily construct a solution to

20Such a result would be an important consideration for the set {NH0, NH1, NH2, . . .} just described
at the end of chapter 2.

21Recall that SH(n) refers to the number of finite steps that the machine takes to halt of the n-state
machine that takes the greatest number of finite steps to halt.

18
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the Busy Beaver problem similar to that outlined in section 2.3.2.22 The immediate direct

conclusion that we have already stated in section 2.3.1 is as such: No Turing machine can

generate a sequence of numbers for which each number in the sequence is larger than the

corresponding value in an ordered sequence of Busy Beaver values.

The question that we immediately now pose is: how could this be? A skeptic might

suggest that one could construct a Turing machine that randomly generates numbers of

increasing size and by sheer luck, it enumerates a sequence of values that dominate the

sequence of Busy Beaver values. We know, however, that pure randomness cannot be fully

captured by mechanisms of Turing-computation and thus this suggestion is unfounded.

Clearly we are dealing with an undeniably proven fact so it can truly be considered bul-

letproof. However, what of humans? If humans are bounded by the capabilities of Turing

machines, then this would mean that there are sequences of numbers (i.e. Busy Beaver

numbers, sequence of values of any function that dominates the Busy Beaver function,

etc.) that are unattainable by any means whatsoever!

Consider the following proposition. Let us define a function h(n) where h(0) is set

equal to the greatest number conceptualized in some representational form by any human

to date. We can set h(1) to be the greatest such number 1000 years from now, h(2), 2000

years from now, and so on.23 Clearly this function is certifiable and computable by humans

(as it is a direct product of human thought).24 If it is in fact true that the computational

powers of the human mind lie below the Turing limit, then are we to believe that our

22Suppose that there is a Turing computable function f(n) that dominates SH(n). This would mean
the following is true:

∃k∀n>k(f(n) > SH(n))

If this is the case, however, then we can easily define another Turing computable function f ′(n) = f(n) +
f(k). Thus f ′(n) > SH(n) for all n > 0. We can now use f ′(n) as part of a very straightforward solution
to Σ(n):

• Enumerate the set T of all Turing machines with n-states

• Run each machine t ∈ T until it has either halted or f ′(n) steps have been executed

• If f ′(n) steps have been executed, the machine is a non halter and can be discarded

• If the machine has halted, verify its candidacy and add to the candidate set C

• Return the maximal productivity of the most productive Turing machine in C

A similar procedure could be used to produce solutions to SH(n), the halting problem, and other similar
problems.

23We realize that due to the infinitary nature of numbers it is quite easy to conceptualize a greater
number by simply say adding 1 or raising it to the power of googool. We will assume for our purposes that
we can choose a greatest conceptualized number to date and any additions or modifications to this should
be considered as candidates for the next value in the sequence.

24Clearly in order to calculate say h(100), it will take 100, 000 years. This does not, however, affect the
computable nature of the function.
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function h(n) cannot possibly dominate Σ(n)?! We find this very difficult to believe and

thus present a more grounded case for this notion in the following sections.

3.1.2 Weak A.I. vs. Strong A.I.

It is at this point that we are truly entering the realm of a knotty philosophical

debate about the scope of conventional artificial intelligence. This debate of course being

whether or not it is possible to create a machine that is equivalent to a human in every

aspect of intelligence (including the likes of cognitive states, thinking, understanding, etc.)

Before we advocate our position (although it has probably already become increasingly

clear at least what that approximate position might be), we must first specify the spectrum

of views that we are pulling from. Specifically, artificial intelligence can be broken down

into what are called “strong” and “weak” paradigms and consequently further classified

as we shall see.

Perhaps the most well known opponent of “Strong” A.I. and pioneer of the distinc-

tion between “Weak” and “Strong” A.I. is John Searle. In (Searle 1980), he outlines this

distinction:

In answering this question I find it useful to distinguish what I call “strong” AI from
“weak” or “cautious” AI. According to weak AI, the principal value of the computer
in the study of the mind is that it gives us a very powerful tool. For example, it
enables us to formulate and test hypotheses in a more rigorous and precise fashion
than before. But according to strong AI the computer is not merely a tool in the
study of the mind; rather the appropriately programmed computer really is a mind in
a sense that computers given the right programs can be literally said to understand
and have other cognitive states. (Searle 1980)

He then proceeds to suggest via his famous Chinese room experiment25 that weak AI is

perfectly reasonable yet at the same time strong AI is not. Without an involved discussion

on the Chinese room experiment itself, we must note that the version of “weak” AI that

Searle appears to claim seems to be self contradictory. We elaborate further shortly.

25A very brief summarization of this thought experiment is as follows: Suppose we lock a person in a
room and provide him with a set of symbols and corresponding set of rules that indicate how to correlate
sequences and/or subsets of such symbols into some other corresponding set of symbols. We then provide
this person several batches of symbols and request that he use the given rules to generate appropriate
response sets of symbols. Unbeknownst to the man in the room, the sets of symbols and rules that we are
giving him are actually representative of a story written in Chinese with a corresponding set of questions
about the story. To the outside observer, it appears as though the man in the room understands and is
conversing in Chinese when in fact, he is simply mindlessly interpreting symbols according to a set of rules.
Thus Searle’s conclusion is that since this process is conceivably what an artificially intelligent machine
would be doing, it is possible to simulate the appearance of a machine understanding Chinese (weak AI),
but it is not possible to actually build a machine that understands in the way that a person does (strong
AI).
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First, however, it is clear that the concepts of strong and weak AI are still some-

what vague in definition. Thus we present a more comprehensive breakdown of common

viewpoints given by Penrose (1994):

A All thinking is [Turing-]computation; in particular, feelings of conscious aware-
ness are evoked merely by the carrying out of appropriate [Turing-]computations.

B Awareness is a feature of the brain’s physical action; and whereas any phys-
ical action can be simulated [Turing-]computationally, [Turing-]computational
simulation cannot by itself evoke awareness.

C Appropriate physical action of the brain evokes awareness, but this physical
action cannot even be properly simulated [Turing-]computationally.

D Awareness cannot be explained by physical, [Turing-]computational, or any other
scientific terms.

(Penrose 1994, pg. 12)

We can see that Penrose lays out a framework where A is the “strongest” consider-

ation for AI and D is consequently the “weakest.” Clearly we can consider viewpoint A as

corresponding to “Strong” AI as it is described by Searle. If we were to accept this claim,

then our suggestion that humans encapsulate the ability to solve the Busy Beaver problem

would be immediately rebuked. Thus moving down the list, B is the viewpoint that Searle

appears to advocate but which we have already suggested might be self contradicting.26

As Penrose points out himself, D suggests that human cognitive processes are detached

from the physical world and are mystical in nature. We neither support this view nor do

we attempt to scientifically address it. Thus we are left with position C, incidentally the

one which Penrose also supports.

What is it that we are suggesting then? We have chosen to align ourselves closely

with the views purported by Penrose (1989, 1994) which is that there are certain elements

of physical laws that are not Turing-computational in nature. Therefore, since the human

mind is subject to these physical laws, it cannot be appropriately simulated via the in-

stantiation of some Turing machine. Not only this, however, but we also wish to go one

step further. As has already been stated, we wish to vouch for the possibility that the

Busy Beaver function is solvable by mechanisms available in the human mind. This would

26Searle repeatedly claims that humans are in fact “thinking machines” and that all of their cognitive
processes can be simulated Turing-computationally. However, he still contends that a program (Turing
machine) cannot be constructed that “thinks” and “understand” like a human. Again, we do not dive into
this debate too deeply for it is addressed in countless other papers and not intimately related to our focus.
Regardless, we do point out that we feel B does not appear to be a true possibility. If the brain is a result
of physical actions that can all be simulated by Turing-computable mechanisms, then it appears obvious,
at least to us, that a properly configured Turing machine could possess consciousness and “awareness” just
as a human does. Bringsjord & Zenzen (2003) raise this issue as well noting that B should be subdivided
into distinct claims that are individually addressed.
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mean that the human mind must encapsulate computational powers beyond that of the

Turing limit. Thus, we contend that the physical laws suggested by Penrose27 are not

only non-Turing-computational, but they are in fact hypercomputational and encapsulate

methods of computation that are not available at or below the Turing limit. We thus

present a concrete physical phenomena to support this view in the following section.

3.1.3 Hypercomputing the Steiner Tree Problem

In an as yet unpublished note, Bringsjord & Taylor (2005) present an exceedingly

intriguing argument in which they claim to have proven the long standing P=?NP prob-

lem.28 We do admit that the suggested proof is the result of very clever ingenuity, but it

is subject to a fatal flaw if one unproven proposition (which they admit to themselves) is

true. Consider, first, their proposed proof:

The proof is based on a known NP-complete problem that can be solved via a simple

physical process. Bringsjord & Taylor (2005) describe this process:

For example, the Steiner Tree problem (STP) is known to be NP-complete (see e.g.
(Garey & Johnson 1979, pp. 208-209)). Nonetheless, a simple process (termed an
analog computation) can apparently solve it quickly. STP is the problem of con-
necting n points on a plane with a graph of minimal overall length, using junction
points if necessary. The physical process in question can be described in English as a
straightforward algorithm: Make two parallel glass plates, and insert n pins between
the plates to represent the points; dip the structure into a soap solution, and remove it;
record the answer. The soap film will connect the n pins in the minimum Steiner-tree
graph (Iwamura, Akazawa & Amemiya 1998).

The brunt of their argument can be summarized as follows: Since all physical processes can

be simulated by Turing-computable mechanisms, then the physical process that connects

the pins together with the soap film can be modeled via some Turing machine Mc. Thus

since this process achieves a solution to the NP-complete STP problem in linear time,

P=NP must be true.29

Clearly, the crucial assumption is that all physical processes can be simulated via

some Turing machine. Bringsjord and Taylor concede this notion: “P 6=NP thus immedi-

ately implies, courtesy of our arguments, that hypercomputational processes exist in some

physical universes.” They then attempt to remedy this problem by suggesting:

27We must note that Penrose’s arguments are deeply rooted in quantum theory and other aspects of
physics with which we have minimal familiarity. Regardless, we wish to make no claims about the physics
aspect of the physical laws that we speak of, only of their computational qualities.

28See (Sipser 1992) for a description and discussion of the history of this problem.
29The formalization of their argument is slightly more complex, but the basics of the core can be

summarized as above.
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While many are perhaps right to point out, contra Wolfram and company, that some
physical phenomena (e.g., those associated with quantum mechanics) are so bizarre
and complicated that they resist formalization in TM-level computational models,
the fact of the matter is that the analog process we exploit is a painfully simple
macroscopic phenomenon - as we say, a “normal” process.

Why should we accept such an explanation? Bringsjord and Taylor concede the possibility

that at perhaps the microscopic level, the constituents of the soapy solution might follow

hypercomputational physical laws. Why, then, does the soapy solution lose its hypercom-

putational properties when it is being viewed as a whole? If the very building blocks

of the physical laws that govern the organization of the soapy solution are grounded in

hypercomputational processes, then it seems nearly obvious that the process as a whole

could harness this same power.

Thus we reject Bringsjord and Taylor’s claim that P=NP. Since we align ourselves

with the general consensus among the mathematical community (that P 6=NP) (Kupchik

2004, Feinstein 2004, Ionescu 2005, Moscu 2005, Grover 2005, Ivanov 2005), as Bringsjord

states plainly himself, we must immediately conclude that hypercomputational processes

do in fact exist within the realm of physical possibility. Thus not only do we contend that

hypercomputational processes exist within the human mind, considering these conclusions

we must also affirm that hypercomputation exists within physical processes outside of the

human mind.

3.1.4 HyperEnumeration

At last we now return to our original thought experiment that we describe in sec-

tion 3.1.1. In this experiment, we suggest a function h(n) that is the direct result of

human thought (compounded over 1000 year intervals of time). Our intuition sees no

conceptual reason why the possibility that this function dominates Σ(n) should not exist.

However, the “strong” AI view and even the “weak” AI view as it is supported by Searle

(1980) would suggest that our intuitions are incorrect. Armed with the claims presented

in sections 3.1.2 and 3.1.3, we have now at least opened up the possibility that humans

possess the power to hypercompute and thus perhaps the ability to “hyperenumerate.”

3.2 Defending Penrose: The Non-Halt Detection Capabilities of Hu-

mans

In light of the questions raised in the preceding section 3.1, we now turn to a more

concrete argument that lends itself both to the potential solvability of the Busy Beaver
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problem as well as the aforementioned claim that some physical processes can only be

explained by hypercomputational means. As is previously mentioned, Roger Penrose

(1994) presents a multi-faceted case against the view that a properly programmed Turing

machine can encapsulate all of the abilities and qualities of a human. In particular, Penrose

suggests a very concise argument that parallels Gödel’s incompleteness theorems with the

non-haltingness of Turing machines. His proposed conclusion is that a Turing machine

cannot be programmed to encapsulate all elements of human understanding.

At this point, before we proceed, we must point out that Penrose’s argument as

it is presented, is part of a greater argument designed to refute not only the “Strong

A.I.” standpoint, but also the “Weak A.I.” standpoint as well (see section 3.1.2). In a

far-reaching presentation of a case against “Strong A.I.” (but while at the same time

supporting “Weak A.I.”) Bringsjord & Zenzen (2003) present a formalized attack against

Penrose’s mentioned Gödelian argument. Our goal in this section is therefore threefold.

We first wish to defend Penrose’s line of reasoning against the critical refutation outlined

in (Bringsjord & Zenzen 2003). Secondly, we wish to suggest that Penrose’s core reasoning

lends itself to the claim outlined in section 3.1 (namely that not all physical phenomena can

be simulated by Turing-computable mechanisms). Finally, we wish to connect Penrose’s

argument to our attack on the Busy Beaver problem and examine the possibilities about

the computability of the function that it suggests.

3.2.1 Penrose’s Argument

The core of Penrose’s argument as it is outlined in (Penrose 1994) makes an impor-

tant connection between Gödel’s incompleteness theorems and humans’ ability to ascertain

that particular Turing machines do not halt. Without delving too deeply into Gödel’s the-

orems, the core of his ideas is that given any formal system of mathematical rules, there

always exists statements within that system that cannot be proven solely by the rules

set forth in that particular system. However, this does not mean that these statements

cannot be proven via mechanisms that exist outside this formal system. Thus there exist

statements that we, as humans, can see to be true by our own mechanisms of logical

reasoning but this truth cannot be ascertained by the formal rules of the system in which

the statement is presented.30

Armed with this knowledge, Penrose suggests the nonexistence of some Turing ma-

30See chapter 4 of (Penrose 1989) where Penrose presents a very comprehensive prose on the meaning
of Gödel’s ideas and theorems
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chine that he calls A that “encapsulates all the procedures available to human mathemati-

cians for convincingly demonstrating that computations do not stop.” (Penrose 1994, pg.

73) Additionally, in this context he is concerned with demonstrating the non-haltingness

of computations (and thus Turing machines) that are exclusively functions of one in-

put value. Thus he outlines the enumeration of all Turing machines (an easily provable

Turing-computational process) as C0, C1, C2, C3, ... and the computation of the qth Turing

machine in this sequence on the input value n as Cq(n). As is done in (Bringsjord &

Zenzen 2003), we duplicate his argument here for clarity:

A is just any sound set of computational rules for ascertaining that some computa-
tions Cq(n) do not ever halt. Being dependent upon the two numbers q and n, the
computation that A performs can be written A(q, n), and we have:

(H) If A(q, n) stops, then Cq(n) does not stop.

Now let us consider the particular statement (H) for which q is put equal to n . . . we
now have:

(I) If A(n, n) stops, then Cn(n) does not stop.

We now notice that A(n, n) depends upon just one number n, not two, so it must be
one of the computations C0, C1, C2, C3, ...(as applied to n), since this was supposed to
be a listing of all computations that can be performed on a single natural number n.
Let us suppose that it is in fact Ck, so we have:

(J) A(n, n) = Ck(n).

Now examine the particular value n = k. (This is the second part of Cantor’s diagonal
slash!) We have, from (J),

(K) A(k, k) = Ck(k).

and, from (I), with n = k:

(L) If A(k, k) stops, then Ck(k) does not stop.

Substituting (K) in (L), we find:

(M) If Ck(k) stops, then Ck(k) does not stop.

From this, we must deduce that the computation Ck(k) does not in fact stop. (For if
it did then it does not, according to (M)!) But A(k, k) cannot stop either, since by
(K), it is the same as Ck(k). Thus, our procedure A is incapable of ascertaining that
this particular computation Ck(k) does not stop even though it does not. Moreover,
if we know that A is sound, then we know that Ck(k) does not stop. Thus, we know
something that A is unable to ascertain. It follows that A cannot encapsulate our
understanding. (Penrose 1994, pg. 74-75)

3.2.2 Bringsjord and Zenzen’s Refutation

There is a clear-cut flaw in Penrose’s argument as it has just been presented and

Bringsjord & Zenzen (2003) quite convincingly demonstrate this flaw. Before we present

this demonstration, we first must indicate the notational scheme that they use and hence-

forth will be used by us and in our following argument in section 3.2.3:
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For our formalization we follow the notation of (Ebbinghaus, Flum & Thomas 1994),
and hence deploy atomic formulas

Mt : u→ v

to denote the fact that TM Mt, starting with u as input on its tape, halts and leaves
v as output. Similarly

Mt : u→ halt

and
Mt : u→ ∞

denote, respectively, that the TM in question halts and doesn’t halt (on input u).
Next, assume that the alphabet with which our TMs work is of the standard sort,
specifically {|, •}, where a natural number n is coded as a string of n |’s, and • is used
solely for punctuation. Finally, fix some enumeration of all Turing machines and a
corresponding Gödel numbering scheme allowing us to reference these machines via
their corresponding natural numbers. (Bringsjord & Zenzen 2003, pg. 60-61)

Bringsjord and Zenzen reveal the aforementioned flaw in Penrose’s reasoning by

utilizing this formal notational scheme to formalize Penrose’s argument as it is presented

in the preceding section (3.2.1). Thus they begin by attempting to encode Penrose’s

“proof” into a first order logic style proof and the beginning of the proof (encapsulating

Penrose’s line of reasoning up through statement (I)) can be achieved without issue:31

The initial part of the formalization is straightforward. Penrose begins by assuming
that there is some set A of computational rules (we use ’Ma’ to refer to A as TM;
this is an identification Penrose himself, following standard mathematical practice,
explicitly sanctions in Appendix A of SOTM ) such that: if A yields a verdict that
some TM M fails to halt on input n, then M does fail to halt on n. He then moves,
via quantifier manipulation, through (H) to (I). Here’s how the initial reasoning runs:

1′ ∃m∀q∀n[Mm : q • n→ halt⇒Mq : n→ ∞] supposition
2′ ∀q∀n[Ma : q • n→ halt⇒Mq : n→ ∞] = (H) supposition
3′ ∀n[Ma : b • n→ halt⇒Mb : n→ ∞] 2′∀E
4′ Ma : b • b→ halt⇒Mb : b→ ∞ 3′∀E
5′ ∀n[Ma : n • n→ halt⇒ Mn : n→ ∞] = (I) 4′∀I

(Bringsjord & Zenzen 2003, pg. 62)

It is at this point that the flaw becomes obviously apparent. Recall that after this portion

of Penrose’s reasoning ((I)), he proceeds to suggest that the computation A(n, n) is iden-

tical to some computation Ck(n) in the corresponding enumeration of all possible Turing

machines. In Bringsjord and Zenzen’s formalized model, therefore, this means that the

machine Ma when operating on the input n•n is identical to that of some Turing machine

Mk when operating on input n. Clearly this cannot be the case.

31We assume that the reader is trained in the rules of formal first order logic in order to follow the
formalization of Penrose’s arguments. See (Barwise & Etchemendy 1999) for an excellent resource in this
discipline.
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What follows from this point forward in (Bringsjord & Zenzen 2003) is an attempt by

Bringsjord and Zenzen to salvage Penrose’s line of reasoning such that perhaps Penrose’s

“proof” can be fixed in a formal sense that produces the resulting conclusion that Penrose

ultimately sets out to show. They reason about the possibility that while the machine Ma

operating on the input n • n cannot possibly be identical to some machine Mk operating

on the input n, it is still quite easy to show that there does in fact exist some machine

Mk such that Ma : n • n and Mk : n result in identical behavior :

Given a TM M1 that operates on input n •n and eventually halts, it’s easy to build a
TM M3 which starts with just n on its tape, calls a TM M2 which copies n so that n•n
is written on the tape, and then proceeds to simulate M1 step for step. (Bringsjord
& Zenzen 2003, pg. 63)

Thus they concede that in this case M1 and M3 are “approximately identical” and thus

write this as M1 ≈M3.

As a result of this concession, they propose the following Lemma as the next line of

proof to allow Penrose’s argument to continue:

6′ ∀n[(Mn : n • n→ halt⇒Mn : n→ ∞) ⇒
∃q(Mq ≈Mn ∧ (Mq : q → halt⇒Mq : q → ∞))] Lemma

Consider, however, a prose interpretation of what this Lemma actually suggests: Given

any TM Mn, if the fact that it halts on input n • n implies that it does not halt on input

n, then there exists a TM Mq which is “approximately identical” to Mn such that if Mq

halts on input q then it does not halt on input q. The problem with attempting to fix

Penrose’s problem by introducing such a Lemma is that it forces the instantiation of the

constant k in Penrose’s original argument to be equal to the constant a if there is any hope

of establishing his goals. Why, however, should this be the case? Even though Penrose

does claim that his machine A is equal to one of the enumerated machines Ck, might it

still be possible to conclude the proof via some intermediary machine Mk that is not the

same machine as Ma? We believe that this is the case and present our argument in the

following section.

3.2.3 Defense of Penrose’s Reasoning

Before we dive into our own attempted rescue of Penrose’s reasoning via formaliza-

tion, let us first back up a step. Recall from the previous section 3.2.2 the beginnings of a

formalization of Penrose’s argument by Bringsjord and Zenzen as steps 1′ - 5′. In order to

encapsulate the totality of Penrose’s argument, we must ultimately refute the claim that

“A encapsulates all the procedures available to human mathematicians for convincingly
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demonstrating that computations do not stop.” (Penrose 1994, pg. 73) Thus if this is

the case, then not only must we assume the proposition outlined in line 1′ of Bringsjord

and Zenzen’s formalization, but we also must suitably encode the fact that for any pair

of values q and n, if Cq(n) can be shown to never stop by some conventions of human

reasoning, then A(q, n) will also stop. Thus we define ψ(q, n) to be equivalent to the

statement: Mq : n→ ∞ can be shown in some way by the procedures available to human

mathematicians for convincingly demonstrating that a Turing machine does not halt. We

include this in a modified formalization of Penrose’s argument that corresponds to lines

1′ - 5′ of Bringsjord and Zenzen’s proof above:

1′′ ∃m∀q∀n[(Mm : q • n→ halt ⇒Mq : n→ ∞)∧
(ψ(q, n) ⇒Mm : q • n→ halt] supposition

2′′ ∀q∀n[(Ma : q • n→ halt⇒Mq : n→ ∞)∧
(ψ(q, n) ⇒Ma : q • n→ halt)] [a] assumption

3′′ [b] assumption
4′′ ∀n[(Ma : b • n→ halt⇒Mb : n→ ∞)∧

(ψ(b, n) ⇒Ma : b • n→ halt)] 2′′∀E
5′′ [(Ma : b • b→ halt ⇒Mb : b→ ∞)∧

(ψ(b, b) ⇒Ma : b • b→ halt)] 4′′∀E
6′′ Ma : b • b→ halt⇒Mb : b→ ∞ 5′′∧E
7′′ ψ(b, b) ⇒Ma : b • b→ halt 5′′∧E
8′′ ∀n[Ma : n • n→ halt⇒Mn : n→ ∞] = (I) 3′′ − 6′′∀I32

9′′ ∀n[ψ(n, n) ⇒Ma : n • n→ halt] 3′′ − 7′′∀I

At this point, we can now proceed to attempt to rectify Penrose’s flaw as is described

above. Recall that Bringsjord and Zenzen introduce a proposed line of reasoning that could

potentially help Penrose’s case. Specifically, it can be easily shown that for any given TM

M1 that operates on the input n • n, we can construct a TM M3 that is “approximately

identical” toM1 in that it operates on input in the form of n but its ultimate behavior is the

same as that of M1 when the two machines are given inputs in their respective required

formats. Bringsjord and Zenzen then proceed to introduce a Lemma which does not

directly encapsulate the meaning of this statement. Instead, it makes a fatal assumption

about the instantiation of the machine that is to make use of this property in Penrose’s

case. Thus we wish to strip all assumptions and directly encapsulate the meaning of this

notion of “approximately identical” as follows:

32Here we use a somewhat liberal interpretation of the ∀I rule since line 6′′ is not in the last line of the
subproof. The reasoning is still perfectly valid, however.
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10′′ ∀m∃k∀n[(Mm : n • n→ halt ⇔Mk : n→ halt)∧
(Mm : n • n→ ∞ ⇔Mk : n→ ∞)∧
∀o(Mm : n • n→ o⇔Mk : n→ o)] Lemma

Essentially what this statement formalizes is the notion that for any TM Mm, there exists

some TM Mk such that for all inputs of the form n • n run on Mm, machine Mk will

produce identical output when run on input n. By identical output we mean that whether

or not the machine halts will be the same in both respects and if the machines halt, the

output tapes will be the same. The truth of this Lemma should be undisputed given the

line of reasoning already presented concerning TM’s M1 and M3.

We are thus now armed with an appropriate formalized property that allows us to

continue with Penrose’s line of reasoning. The remainder of the proof is as follows:

11′′ ∃k∀n[(Ma : n • n→ halt⇔Mk : n→ halt)∧
(Ma : n • n→ ∞ ⇔Mk : n→ ∞)∧
∀o(Ma : n • n→ o⇔Mk : n→ o)] 10′′∀E

12′′ ∀n[(Ma : n • n→ halt⇔Mc : n→ halt)∧
(Ma : n • n→ ∞ ⇔Mc : n→ ∞)∧
∀o(Ma : n • n→ o⇔Mc : n→ o)] [c] assumption

13′′ (Ma : c • c→ halt ⇔Mc : c→ halt)∧
(Ma : c • c→ ∞ ⇔Mc : c→ ∞)∧
∀o(Ma : c • c→ o⇔Mc : c→ o) 12′′∀E

14′′ Ma : c • c→ halt⇔Mc : c→ halt 13′′∧E
15′′ Ma : c • c→ halt⇒Mc : c→ ∞ 8′′∀E
16′′ Mc : c→ halt assumption
17′′ Mc : c→ ∞ 14′′, 16′′ ⇔E
18′′ ⊥ 16′′, 17′′⊥I33

19′′ Mc : c→ ∞ 16′′ − 18′′¬I34

20′′ ψ(c, c) 19′′ (definition)35

21′′ ψ(c, c) ⇒Ma : c • c→ halt 9′′∀E
22′′ Ma : c • c→ halt 20′′, 21′′ ⇒E
23′′ Ma : c • c→ ∞ ⇔Mc : c→ ∞ 13′′∧E
24′′ Ma : c • c→ ∞ 19′′, 23′′ ⇔E
25′′ ⊥ 22′′, 24′′⊥I
26′′ ⊥ 11′′ − 25′′∃E
27′′ ⊥ 1′′ − 26′′∃E

Thus we see that Penrose’s original assumption specified in line 1′′ has yielded a contra-

diction and by reductio ad absurdum, we conclude that it must therefore be false. That is

33Here, we again use a liberal interpretation of ⊥ introduction by assuming that statements such as
Mc : c→ halt and Mc : c→ ∞ are negations of each other. We see no reason why this should be disputed.

34Again we take a shortcut without formally defining the negation of Turing machine behaviors.
35Recall that ψ(q, n) indicates that Mq : n → ∞ can be shown to be true by some method of human

reasoning. In this case, we have shown that Mc : c → ∞ is true using simple logic (which is clearly a
method available to human mathematicians) and therefore we can conclude ψ(c, c)



30

in its informal form: there is no Turing machine A that encapsulates all available mech-

anisms to human mathematicians to ascertain that a Turing machine does not halt. As

a result of this conclusion, we can immediately deduce that the mechanisms with which

human mathematicians determine that a Turing machine does not halt must contain some

non-Turing-computational properties.36 If they do not, then we could easily create the

suggested machine A.

3.2.4 Revisiting the Dream

Recall now our dream as outlined at the end of section 2.3.3. We can see now

how our dream, while not possible in a Turing-computational sense, is gaining momentum

as a still human-computable possibility. Drawing from Penrose’s line of reasoning in

(Penrose 1994) and coupling it with our presentation in section 3.1, we have breathed life

into the notion that human reasoning mechanisms used to deduce that Turing machines

do not halt must tap into hypercomputational properties of the physical makeup of the

mind. Thus as it relates to our dream, we see two not necessarily exclusive possibilities

that could contribute to our hope:

1. The set {NH0, NH1, NH2, NH3, . . .} is hyperenumerable by human capabilities.

2. There exist some items {NHx, NHy, . . .} in this set that are not Turing-computable

but they are hypercomputable by human capabilities.

We have already briefly addressed the hyperenumeration possibility in section 3.1. In the

next section, we explore a concept that has important ramifications for both possibilities.

3.3 Diagrammatic Reasoning Potential

At this point it has become increasingly clear what our position is on human compu-

tational abilities and their specific tie-in to the computability of the Busy Beaver problem.

To reiterate briefly, we believe that hypercomputational processes exist naturally in na-

ture, and as is evidenced by our defense of Penrose’s argument in section 3.2, humans are

able to tap into these processes specifically via their abilities to determine whether or not

particular Turing machines halt. Thus it should already be clear to some observers that

humans possess the power to make “more progress” on the Busy Beaver problem than

36As has already been presented in section 3.1, these non-Turing-computational properties we contend
are hypercomputational in nature.
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any properly programmed Turing machine.37 However, an intelligent and skeptical reader

might offer one or more of the following rebuttals to what we have claimed thus far:

R1 You have only provided evidence for hypercomputational processes that exist in

nature (and not in humans). Even if there is some merit to this bold claim, why are

we to believe that humans maintain the ability to tap into this power? Even though

you have shown that Penrose’s suggested procedure is non-Turing-computational,

how can you immediately make the claim that it is hypercomputational?

R2 We are not convinced that humans can hypercompute. Despite your arguments, you

have still not provided any hard evidence of situations where humans clearly engage

in hypercomputational methods.

In response to R1, let us reconsider the machine A presented in Penrose’s argu-

ment of section 3.2.1. We have revised Penrose’s proof and brought formal validity to

the ultimate claim: That Turing machine A, which purportedly encapsulates all meth-

ods available to humans for ascertaining that a Turing machine does not halt, does not

and cannot exist. Clearly, though, humans can perform the procedure that is defined for

machine A (since by definition, the procedure directly cites human capabilities). Thus

the ability of humans to process information about non-halting Turing machines is be-

yond that of standard computational mechanisms and this should intuitively lead to the

conclusion that humans can hypercompute. The evidence provided in section 3.1.3 that

hypercomputational processes exist in nature simply provides further explanation as to

how the human mind could possibly be capable of hypercomputation. Since some physical

processes can only be explained by hypercomputational means, then clearly the human

brain could be grounded in these fundamental physical processes thus lending itself to

hypercomputational capabilities.

Regardless, in spite of our arguments, we realize that many skeptics may still raise

doubts and offer statements such as R2 above. In response to these statements, we

continue to solidify our stance in the following sections by offering certain human reasoning

37We make this statement under the assumption that Algorithm 1 in general is the only reasonable algo-
rithm that could potentially be used to solve Σ(n). If this is indeed the case, then clearly “more progress”
can be made by humans since their ability to determine whether or not Turing machines halt cannot be en-
capsulated in some Turing-computable process. Thus line 3 of this algorithm can be achieved with greater
success by humans than by a machine. We concede the possibility that some other reasonable algorithm
could potentially exist, but the mere fact that Σ(n) is proven to be uncomputable suggests that any other
reasonable algorithm would be subjected to the same line of reasoning concerning hypercomputational
processes.
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methods about diagrammatic information as a grounding example of hypercomputation.

3.3.1 Efficiency of Diagrams

It should be immediately apparent that diagrams38 can provide information in a very

compact, succinct, and readily available form. These diagrams could include a vast range

of contexts from direct spatial representations of physical objects or processes (i.e. maps,

sketches of physics problems, etc.) to conceptual mappings of non-physical things (such

as trends in stock prices or perhaps the execution of a Turing machine over time). Larkin

& Simon (1987) contend that at least from an external standpoint, human processing of

diagrams is often considerably more efficient than processing of corresponding symbolic

representations of the same information:

The advantage of diagrams, in our view, are computational. That is diagrams can be
better representations not because they contain more information, but because the
indexing of this information can support extremely useful and efficient computational
processes.

What we wish to support is that the computational processes mentioned are in fact hy-

percomputational processes and thus humans can exploit their previously claimed hyper-

computational powers through diagrammatic reasoning.

Figure 3.1: Diagram for Reasoning Test

Let us consider first the diagram depicted in figure 3.1. To the observer trained

in basic geometry, it should be immediately apparent that with respect to the diagram,
a
b

= c
d

is a true statement. Not only this, but also consider how this conclusion is actually

38We refer to diagrams here as any type of picture, image, or diagram that represents information in
some spatial way and not exclusively with some formal symbolic language. See (Chandrasekaran 2005) for
a more elaborate discussion of the difference between diagrammatic and symbolic representations.
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ascertained. Indisputably, a logical proof using basic theorems of geometry can easily

be constructed to verify the truth of this claim. However, does the trained observer

actually construct a complete mental logical proof before being self-convinced of the above

statement? Consider the following hypothetical dialog between two people observing the

diagram in question:

Observer A : In figure 3.1, is a
b

= c
d

a true statement?
Observer B : Yes.
Observer A : Are you sure?
Observer B : Absolutely.
Observer A : Prove it to me.
Observer B : [re-examines diagram and thinks for a minute]

[constructs a logical proof]

First of all, we are not likely to receive many objections regarding the hypothetical nature

of this dialog. Clearly it is descriptive of an event that is very conceivable. The question

that we maintain, however, is why does Observer B need to re-examine the diagram and re-

think the problem before providing a logical proof? He has already claimed with absolute

certainty that a
b

= c
d

is an undeniable fact. Therefore, where does this certainty come

from? If it is from his provided logical proof, than why could he not immediately provide

the proof without additional processing of the diagram? It is in this original reasoning

process of Observer B that we contend hypercomputational powers are at work.

We realize that up to this point in this section we have simply been begging the

question on our position about hypercomputational powers in human diagrammatic rea-

soning processes. While we contend that we have been begging a good question, we now

turn to a pair of arguments to support our claim.

3.3.2 The Searle-ian Argument

In our first line of defense, consider first what a Turing-equivalent, machine process-

ing of the diagram in figure 3.1 and the corresponding question raised in the preceding

section might entail. Clearly we would need to first transform the diagram into some

symbolic representational form that can be entered as input on the tape of such a ma-

chine. Thus we can think of a diagram as an array of pixels. Each pixel is assigned a

corresponding RGB (Red/Green/Blue) set of color values and the entire array of pixels is

transformed into a suitable one line format that can be entered on our tape. Additionally,

we must program the machine so that it is capable of transforming this array of pixels into

suitable statements representing the geometric elements displayed in the figure. In order

to respond to the question raised (is a
b

= c
d

a true statement?), two lines of processing



34

could be followed:

1. The machine could directly calculate the length of each of the required line segments

(a, b, c, d) and then perform a direct comparison of the necessary ratios.

2. The machine could be encoded with the necessary geometric theorems to construct

a logical proof to show that the equality in question is true.

We realize that it is possible that there are other methods of machine processing that

could yield the same result. The important point that we are making, however, is not the

exact process involved, but rather that any process we present requires the transformation

of the visual components of any diagram into some digitized symbolic format.

With this issue clarified, we now return to John Searle’s Chinese room argument

(Searle 1980) previously mentioned in section 3.1.2. Recall that the core of this argument

is that it is possible for a human to process stories written in Chinese and then answer

questions about them without having the slightest bit of understanding of the Chinese

language at all. In a similar light, let us consider the following possibility:

A man, we’ll call him Diagram, is put in a room with no windows and the only

contact that he receives with the outside world is through a small slot in the door where

messages can be passed back and forth. Diagram has no training in any geometric prin-

ciples nor does he have any understanding of formal logic syntax and structure. He is,

however, extremely skilled at following directions. He has at his disposal the following:

A A set of transformations that allow him to transform a certain format of sequences

of numbers into a new sequence of alphanumeric, geometric, and logical symbols.

B A set of transformations that, given two sequences of alphanumeric / geometric /

logical symbols, allows him to generate a result of either True or False.

Little does Diagram know that the transformations in A are actually the rules necessary for

transforming a sequence of pixels into a set of statements representing geometric truths

about a diagram. Additionally, the rules outlined in B actually encapsulate the inner

workings of some automated deduction system grounded in formal logic. Given two sets

of symbols for processing with B, the first set should represent the set of premises extracted

from the diagram and the second set represents the goal conclusion.

Thus, through the small slot in the door, we could feed Diagram a sequence of pixels

that represents the diagram in figure 3.1. We could also give him a representative form of
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the statement a
b

= c
d
. We could then ask him to use the rules that he has available in A to

transform the first set of symbols we have given him into a new set. Finally, we could ask

that he use the rules in B to transform this new set along with the second set of symbols

that we have given him. The result is that Diagram can answer the same question about

our diagram as Observer B does in the preceding section without ever seeing it, visualizing

it, or even understanding what he is doing. It is all, instead, the result of him mindlessly

transforming sets of symbols into other sets of symbols, which at the base level, is exactly

what a properly programmed computer does.

The core of this argument, the reasoning of which is borrowed directly from John

Searle’s Chinese room, is that clearly it is possible for a computer to process an image

and arrive at the same conclusion as a human. However, it can do all of this without

ever actually seeing the image or understanding how the conclusion is realized. Diagram

is a direct example of this for he processes a diagram in a manner identical to that of a

computer without even realizing what this process results in as a whole.

We would anticipate that at this point, the alert reader might offer the following

question: “But how does this show that humans can hypercompute? Even if a computer

does not truly understand what it is doing nor see the image that it is processing that

does not mean that human processing of images is beyond the Turing limit.” In response

to this query we ask the reader to consider, once again, the hypothetical conversation

between Observers A and B outlined in the preceding section 3.3.1. Recall that Observer

B proclaims with absolute certainty that a
b

= c
d

is true almost immediately upon hearing

the question. A knowledgeable reader can confirm that this fact can be “read right off

the diagram” as it is quickly an obvious fact. However, now recall that when asked to

prove this claim, an increased level of processing is required from Observer B. It is as

if the conclusion is instantly discovered, yet the Turing-equivalent reasoning to arrive at

this conclusion must be reverse-engineered! This would suggest that the conclusion is

ascertained by some other means (and Observer B would surely affirm that his reasoning

process does not follow that of Diagram in order to arrive at the ultimate claim).

To put this in another light, let us appeal to a similar line of reasoning presented

by Bringsjord & Bringsjord (1996). In our specific example, we present a diagram which

can clearly be processed by both humans and machines (albeit in a suggested different

manner) to arrive at the same conclusions. In Bringsjord and Bringsjord’s terminology,

we have presented an example of a “simple diagram” or S-D:

...D is an S-D if and only if D and the diagrammatic reasoning thereon can clearly be
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fully represented in some logical system L. (Bringsjord & Bringsjord 1996, pg. 387)

While our presentation of an S-D may convince some readers that human diagrammatic

reasoning processes are hypercomputational in nature, we realize that the evidence is

somewhat circumstantial. Thus Bringsjord and Bringsjord push to reveal images that

are not realizable in some logical system. They call these TEMIs (Temporally Extended

Mental Image):

A TEMI is the sort of image which those who are expert in imagistic fields routinely
process. That is, TEMIs are not simply ’visual aids’, like drawings [and whether or
not S-D’s are used as drawings, they do appear to be always usable as such; consider,
in this connection, Euclid’s (1956; trans (Euclid 1956)) own reasoning]; they are much
more robust. For example, consider a screenwriter. Many mature screenwriters are
able to write complete drafts of movies ’in their heads’. That is, they are able to
watch a movie play out before their mind’s eye, from beginning to end, replete with
dialogue, props, intonation, scene changes, camera angles, and so on. (Bringsjord &
Bringsjord 1996, pg. 387)

We do not duplicate the full argument here, but appealing to lines of reasoning from

(Block 1981, Jackson 1982, Nagel 1974, Searle 1992), Bringsjord and Bringsjord suggest

that TEMIs cannot be fully reduced to some symbolic form like our toy diagram or any

S-D.39 Thus if this is the case, then human diagrammatic reasoning processes cannot be

fully encapsulated by some symbol manipulating Turing machine which is suggestive that

hypercomputation is at work.

3.3.3 The Penrose-ian Argument

In section 3.2, we pull out all the stops to revive Penrose’s Godëlian case from

(Penrose 1994, Penrose 1989) against Bringsjord and Zenzen’s attack in (Bringsjord &

Zenzen 2003). We invite the reader to revisit that defense as we again directly borrow from

Penrose’s line of reasoning to support our claim that hypercomputation lies within human

diagrammatic reasoning processes. Recall that Penrose’s original argument (section 3.2.1)

supports the view that it is not possible to encapsulate all methods of reasoning available

to humans for determining whether Turing machines do not halt into some defined Turing

machine A. We later claim that this is a result of human hypercomputational ability. Our

goal for this section is to provide a parallel to Penrose’s argument to directly inject human

diagrammatic reasoning processes into the hypercomputation debate.

For the purposes of this discussion, consider the nature of diagrams as we have

described them. In order to invoke machine reasoning on diagrams, we must digitize their

39See (Bringsjord & Bringsjord 1996) for the full defense
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representations in some way. Therefore, assume that given some diagram N , we can refer

to it and perform computations on it through some digitized representational form n.40

Additionally, we wish to make statements about diagrams and encode these statements

in some representational format as well. Since these statements are already symbolic, it

is trivial to represent them in some notational symbolic form.

With this groundwork established, let us now consider a Turing machine D that can

reason about diagrams. Not only does it reason about diagrams, but encapsulates the same

capabilities as humans for determining true statements about diagrams. By definition, the

machine takes as input a diagram n and a statement k about n and operates as follows:

D(n, k) =











1 if k is true with respect to n

∞ if k is false with respect to n or unknown41

Now as of yet, we have not discussed representing the execution of Turing machines over

time in diagrammatic form.42 Therefore, consider the very simple Turing machine shown

in figure 3.2. We can represent a portion of its execution on an infinitely blank tape over

time as a diagram shown in figure 3.3. It is important to note that while this diagram

consists entirely of symbolic symbols, what makes it diagrammatic is the structural layout

of these symbols. Thus notice that the bold symbol represents the current read head on

the tape and each of the first 20 steps of the machine are graphically aligned to visually

demonstrate the movement of the read head on the tape. Additionally, the tape is denoted

in abbreviated form, under the assumption that the remainder of the tape to the left and

to the right consists of infinite sequences of 0’s. Incidentally, it should be easy to deduce

from this diagram that the Turing machine in figure 3.2 will never halt.

With this diagrammatic representation of the execution of Turing machines, we

can now proceed to the crux of our argument. Consider a diagram S and its symbolic

description s. We can describe S as a diagram that depicts the operation of Turing

machine D over some finite number of steps when run on the input s• t. In this particular

case, t is a representational form of the statement: “S is a diagram of a non-halting Turing

40It is easy to see how this digitization could take place. Similar to the process outlined in section 3.3.2,
think of a diagram as an image which is an array of pixels. Each pixel can be transformed into its
corresponding RGB (Red/Green/Blue) color value and encoded as such. This array of pixels can then be
transformed into a continuous sequence of symbols which we denote as n above. Clearly this, or some
similar mechanism, is how digital computers treat images at their base level.

41We use ∞ to indicate that the machine does not halt.
42We do allude to this possibility in section 3.3.1
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start 0

0:1

1
1:R

0:R

Figure 3.2: Simple Turing Machine Example

0              State 0
1              State 0
10             State 1
100            State 0
101            State 0
1010           State 1
10100          State 0
10101          State 0
101010         State 1
1010100        State 0
1010101        State 0
10101010       State 1
101010100      State 0
101010101      State 0
1010101010     State 1
10101010100    State 0
10101010101    State 0
101010101010   State 1
1010101010100  State 0
1010101010101  State 0

Figure 3.3: Simple Turing Machine Example Execution

machine execution.” Thus in a classical self-referencing case, Turing machine D is asked

to determine whether it does not halt given a representation of itself as input.

Consider the possible responses of D in this case. If D(s, t) returns 1 then it means

that t is true. However, this would mean that S is a diagram of a non-halting Turing

machine and S is a diagram of the execution of D(s, t) itself. Therefore, if D(s, t) returns

1, it is saying that it does not halt even though it does. The only other possible behavior

for D(s, t) is that it does not halt and therefore we can immediately conclude that D(s, t)

does not halt (since the other possibility leads to a contradiction). However, this means

that we have just determined a truth about a particular diagram S that D cannot itself

determine. Thus we cannot possibly construct such a machine D that encapsulates all

methods available to humans to reason about diagrams.
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Clearly this argument is extremely similar to Penrose’s argument that we defend in

section 3.2. In this defense we attribute the human methods about determining whether

a Turing machine does not halt to the hypercomputational processes that exist in nature

(and thus that the human brain is fundamentally subjected to). By a similar line of

reasoning, our new Penrose-ian case that we outline here allows us to now directly attribute

this hypercomputational power to diagrammatic reasoning processes used by humans.

3.3.4 Anchoring Example

As a demonstrative example to illuminate the human diagrammatic reasoning pro-

cesses that we speak of in the preceding sections, consider the Turing machine depicted in

figure 3.4. Clearly the representation of the machine in this form yields no immediately

apparent conclusions about the behavior of this machine in terms of its non-haltingness.

However, similar to the Turing machine execution shown in figure 3.3, we can represent

the execution of the initial steps of this machine (when run on an infinitely blank tape)

in diagrammatic form as shown in figure 3.5. In this format, it is immediately apparent

to the trained observer that this machine sweeps the read head back and forth across the

tape in a repetitive manner, continually pushing the right and left boundaries of each

successive sweep outwards.

start 0

halt

1
0:1

3

1:0

0

2

1:R

1:R
0:L

1:L

0:L

Figure 3.4: Example Turing machine to demonstrate diagrammatic reasoning

In the context of our assault, the machine that we have just described exhibits a
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proven non-halting behavior known as a “Christmas Tree” pattern.43 As we shall see in

section 4.2.4, the automated process to establish that Christmas tree machines do not

halt requires extracting a certain set of partial tape components as well as confirming that

a series of specific transformations on those components hold true in the context of the

specific machine.44 However, consider once again, the diagrammatic representation of the

machine depicted in figure 3.5. It should be easy to convince any observer with proper

knowledge of Turing machines that this machine does not halt. Even more importantly,

though, this persuasion should be possible to do without appealing to the formal definition

of Christmas trees as they are defined in section 4.2.4. In fact, the repetitive behavior is

so apparent, that it can seemingly be simply “read off of the diagram.”

What does this process of “reading” entail though? Is it simply some embedded

brain process that is analogous to the automated reasoning process for Christmas trees

already mentioned? Perhaps one could attempt to argue that this is so. However, con-

sider the reasoning experiment outlined in section 3.3.1. In this experiment, Observer

B was absolutely convinced of the truth of a particular statement concerning figure 3.1

before he was able to formulate a symbolic logical proof. By the same vein, it should be

nearly indisputable that an intelligent observer of figure 3.5 could produce the following

chronological line of reasoning:

1. The observer is positive with absolute conviction that the Turing machine in question

does not halt.

2. After the observer has assured himself of this fact, it takes him several minutes,

hours, or even days to construct a certifiable symbolic proof that parallels the lines

of reasoning about Christmas trees in section 4.2.4.

Thus the question we ask is: How can an intelligent observer be convinced that a Turing

machine does not halt and yet still require a significant additional amount of time to

formulate a symbolic explanation if, at the base level, humans’ thought processes can

be reduced to some symbolic form? We once again appeal to the Searle-ian argument

presented in section 3.3.2. Here we note that, while a computer might be capable of

processing images in ways that externally resemble human reasoning, computers can never

have any concept of what images “look like,” nor can they “visualize” diagrams in the

43See section 4.2.4 for a complete description of the “Christmas Tree” non-halting behavior.
44Essentially, the Christmas tree behavior (and many other behaviors that we shall describe in chapter 4)

is analogous to a grammar that defines a set of transformations that can be shown to repeat in an infinite
manner.
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same manner that humans do. Thus, the concept of “seeing” and “visualizing” is not

something that can be explained in a Turing-equivalent way.

Barwise & Etchemendy (1995) allude to this notion:

People who accept the argument against a universal diagrammatic system, and so
accept the idea of a heterogeneous reasoning system, often suppose that in order to
have a rigorous heterogeneous system, there must be some system of conventions
into which all the others can be embedded and compared, some sort of “interlingua”
to mediate between the various systems of representation. But this is not correct.
Whether it is useful to have an interlingua is debatable, but there is certainly no
logical necessity to employ one.

Here they verbalize the notion that it is not necessary to have an interlingua between a

diagrammatic and symbolic reasoning system that are combined together in a heteroge-

neous reasoning system. While their arguments are fleshed out in the context of their

own heterogeneous system Hyperproof, the argument, when coupled with Bringsjord &

Bringsjord’s (1996) claims about TEMI’s,45 allows us to parallel the human reasoning sys-

tem as also being some heterogeneous flavor. Thus, the human diagrammatic reasoning

process can be considered completely independent and irreducible to the human symbolic

reasoning system. In the context of our example, therefore, the observer is able to ascer-

tain that the Turing machine does not halt through hypercomputational diagrammatic

reasoning mechanisms, and then independently formulates the symbolic line of reasoning.

3.4 Busy Beaver Solvability Claim

At this point, we hope that the discussions from the preceding sections have con-

vinced the reader that there is truth to the following claims:

A. Hypercomputational processes exist in nature and hypercomputation is the only

explanation for some physical laws.46

B. The human mind is grounded in these hypercomputational physical processes and

thus possesses the power to hypercompute.47

C. Humans can utilize their ability to hypercompute to specifically reason about whether

Turing machines do not halt.48

45Refer to section 3.3.2 for an analysis of Bringsjord and Bringsjord’s claims in the context of our
arguments

46See section 3.1.3
47Here we draw from the reasoning set forth in section 3.2 with explicit connection to the facts presented

in section 3.1.3
48See our defense of Penrose’s core argument in section 3.2
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D. Human diagrammatic reasoning is a specific case of humans’ ability to hypercompute

about whether Turing machines do not halt.49

Thus from this knowledge, we have directly opened the possibility that the Busy Beaver

problem is computable (not by some Turing-equivalent machine, of course, but by a human

hypercomputer). Appealing to our original proposed algorithm (Algorithm 1) as a solution

to the problem, we can see that our original hurdle (determining whether a machine is a

halter or non-halter) is now potentially possible50 within the context of human capabilities.

In the following chapter, we present a first-hand assault on the Busy Beaver function as

the initial beginnings of our solution to the problem.

49See section 3.3
50While we have not explicitly proven that humans can provide a full solution to the halting problem,

we have shown that there exists at least one non-halting Turing machine that a human can deduce as
such while a Turing machine cannot. If this were not the case, then machine A from Penrose’s original
argument could exist. We have shown in section 3.2 that this is not the case.



43

     0       State 0
     1       State 1
     10      State 2
     10      State 3
    010      State 0
    110      State 1
    110      State 2
    110      State 0
    111      State 1
    1110     State 2
    1110     State 3
    1110     State 0
    1010     State 3
    1010     State 3
   01010     State 0
   11010     State 1
   11010     State 2
   11010     State 0
   11110     State 1
   11110     State 2
   11110     State 0
   11111     State 1
   111110    State 2
   111110    State 3
   111110    State 0
   111010    State 3
   111010    State 3
   111010    State 0
   101010    State 3
   101010    State 3
  0101010    State 0
  1101010    State 1
  1101010    State 2
  1101010    State 0
  1111010    State 1
  1111010    State 2
  1111010    State 0
  1111110    State 1
  1111110    State 2
  1111110    State 0
  1111111    State 1
  11111110   State 2
  11111110   State 3
  11111110   State 0
  11111010   State 3
  11111010   State 3
  11111010   State 0
  11101010   State 3
  11101010   State 3
  11101010   State 0
  10101010   State 3
  10101010   State 3
 010101010   State 0
 110101010   State 1
 110101010   State 2
 110101010   State 0
 111101010   State 1
 111101010   State 2
 111101010   State 0
 111111010   State 1
 111111010   State 2
 111111010   State 0
 111111110   State 1
 111111110   State 2
 111111110   State 0
 111111111   State 1
 1111111110  State 2
 1111111110  State 3
 1111111110  State 0
 1111111010  State 3
 1111111010  State 3
 1111111010  State 0
 1111101010  State 3
 1111101010  State 3
 1111101010  State 0
 1110101010  State 3
 1110101010  State 3
 1110101010  State 0
 1010101010  State 3
 1010101010  State 3
01010101010  State 0
11010101010  State 1

Figure 3.5: Diagrammatic Representation of Turing machine execution



CHAPTER 4

The Busy Beaver Assault

Now that we have hardened our position on hypercomputational abilities of humans in

the preceding chapter, we now turn to the core of our thesis: that these capabilities

can be harnessed to compute values of the Busy Beaver function. Our attack can be

considered three layers deep. We first present a Turing machine enumeration strategy

that significantly reduces our search space in the spirit of the initial steps outlined in

Algorithm 1. Secondly, we outline an array of explicitly proven non-halting behaviors

that we have embedded into specific detection routines that empowers us to classify certain

classes of machines as non-halters.

As it turns out, our initial attack consists of constructing a computer program

that enumerates the set of Turing machines corresponding to some n representing the

desired number of states in the machines.51 We then construct additional programs which

encapsulate the detection strategies for the said set of non-halting behaviors and use these

programs to test whether each of the machines in our enumeration is a non-halter. Thus

if we continue indefinitely with this process, we are doomed to ultimately fail because we

are attempting to do two things which we have already deemed to be impossible:

1. Construct a Turing machine that solves Σ(n) for any arbitrary n.

2. Encapsulate all mechanisms available to humans to reason about whether Turing

machines do not halt into one procedure.

Thus our goal in this endeavor is to dramatically reduce the machines that we must address

hypercomputationally by automating the decision process for those that can be handled

in some Turing-equivalent manner.

The result is that we are left with some set of machines that we have neither shown

to halt nor not halt. The third layer in our attack involves the specific classification of the

behavior of these machines, directly appealing to human diagrammatic reasoning in this

case. Thus without further delay, we present our attack below:

51This initial program was constructed by Kyle Ross (2003) whom we are indebted to for allowing us
use of his work. Our end results build off of his original code.

44
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4.1 Turing Machine Enumeration Strategy

As it is described by Ross in (Kellett, Ross, Bringsjord & van Heuveln forthcom-

ing), the search space associated with determining values of Σ(n) via our approach is

intimidating:

If we were to attempt the problem through a näıve brute-force approach, it would be
entirely impractical to compute even small Busy Beaver values. For example . . . for
B(6) there would be (4(6) + 1)2(6) ' 5.96 × 1016 machines to consider. The problem
can, however, be partially simplified through a group of reductions that decrease the
redundancy of the search space.

Thus the following adapts elements of discussions in (Ross 2003, Kellett et al. forthcoming)

which encapsulate Ross’s exclusive work. In this work, he employs certain optimization

techniques to enumerate a minimal subset of this search space that eliminates redundancies

and yet still maintains the integrity of a complete search.

4.1.1 Search Space Redundancies

There are four core types of redundancy that Ross (2003) originally presents as part

of the Σ(n) search space. We thus outline them briefly:

halt

start 0

1

1
0:1

0:R

2
1:R

3
0:1

4

1:R

0:1

1:L

0:1

1:R

Figure 4.1: B(5) Champion

Isomorphic machines are machines that are identical in structure, but have different

arrangements in the configuration of their states. Thus consider the machines il-
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halt

start 0

1

1
0:1

0:R

3
1:R

2
0:1

4

1:R

0:1

1:L

0:1

1:R

Figure 4.2: B(5) Champion Isomorph

lustrated in figures 4.1 and 4.2.52 These machines are clearly identical in structure

and behavior but states 2 and 3 have been swapped. Ross points out that: “For

any n-state Turing machine there are n! isomorphic machines (since there are n!

permutations of the n state-numbers), but we need to consider only one of these

since their behavior will be identical.”

Unused state machines such as the one illustrated in figure 4.3 are Turing machines

which contain states that cannot be reached (notice that there are no transitions

defined that terminate in states 4 or 5 for this machine). Again, Ross explains: “For

every n-state machine that has 1 unreachable state, there is an equivalent machine

with n − 1 states, so no such machines need to be considered for our search to be

exhaustive.”

Empty tape machines are Turing machines whose tape is re-established as an infinite

sequence of 0’s after some set of executed transitions. It can be shown that for

such a machine, there is always another machine in the search space with equivalent

behavior.53 Thus we need not consider these either.

Mirror machines are intuitively Turing machines that exhibit the exact mirror behavior

52Note: All figures referenced in this Turing machine enumeration strategy section (section 4.1) are
taken from (Ross 2003).

53Again, we direct the reader to (Ross 2003) for an explanation of this claim.
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halt

start

0
1

0:1 2
1:L

0:1

1:R
0:1

3

1:L

1

0:L

4

0:1

5

0:1

Figure 4.3: A 6-state Turing Machine with 2 unused States

of some other machine in the search space. Thus the mirror machine M c of Turing

machine M would have the identical specification of M except all transitions that

define an action of L would be replaced by an action of R and subsequently all R

actions would be replaced with L’s. Therefore, since their behavior is equal, only

one of these machines needs to be considered.

4.1.2 Solution: Tree Normalization

S

S S S S S S S S S0:0 0:1 0:L 0:R

0:0 0:1 0:L 0:R

halt

0

Figure 4.4: 0th and 1st Levels of the Normalized Tree
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As a solution to eliminate the redundancies just described in the previous section,

Ross (2003) suggests a tree normalization enumeration technique. Consider the beginnings

of this tree illustrated in figure 4.4. At the root of this tree is a basic Turing machine with

one state and no transitions defined. This machine is consequently run on an infinite,

blank tape. Clearly, it will do nothing, as no transitions are defined. However, Ross

considers this a “partial machine” since the machine halts, but is not in a halting state.54

The conditions under which it halts, therefore, are not halting conditions, but rather

opportunities to create additional transitions. In the case of the root node, it halts in

state 0, reading a 0 on the tape. Therefore, we create child machines, each of which

contains a transition for the case in state 0, reading a 0. We enumerate all possible

transitions for this case to all possible existing states, as well as to one of the remaining

unused states (if the number of currently used transitions is less than n for which we

are calculating Σ(n)). The child machines are then pushed onto a stack, and successfully

popped off, with the above general procedure applied to each until all possible machines

have been defined.

It is easy to see that no machine which qualifies as an unused state machine specified

above will be generated with such a schema. This is because a particular transition is only

defined if a machine is guaranteed to reach the particular state and read symbol for this

particular transition. Therefore, no transition can ever be defined from a state in which

there are no terminating transitions. Also, it can be proven that this technique never

generates a pair of isomorph machines as specified above. (Ross 2003)

Additionally, Ross explains in (Kellett et al. forthcoming) how this technique can

be leveraged to account for empty tape machines:

To partially solve this problem, we simply define the first action taken by any machine
to be “write a 1”. This reduces the branching factor between the 0th and 1st levels
of the tree from 8 to 2, as shown in fig. 4.5; compare this against fig. 4.4. . . . We
also implement the generalized solution to the problem. To do this, we, subsequent
to the first transition, simply track how many non-blank symbols are on the tape; if
this number ever reaches 0, then we discard the machine and its successors in the tree
as blank-tape machines. Since the first move has been defined to be “write a 1”, we
are assured that all blank-tape machines have been eliminated from consideration.

In a similar vein, we can eliminate the problem of mirror machines by forcing the first

54It is clearly valid by mechanisms of implicit halt machines to halt due to simply a lack of a defined
transition. However, in the context of the tree normalization schema, we use this lack of a defined transition
to define a new transition and subsequently a sub machine in the tree. A consequence of this is that for
one of the sub machines, we define no transition to denote an implicit halt machine, or as it is denoted in
figure 4.4, a transition to a halt state with no action defined (which behaviorally is identical).
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S

S S S0:1

0:1

halt

0

Figure 4.5: Normalization Tree Pruned Based on Forcing First Write

move of any Turing machine to be to the right.55 The end result is the finalized initial tree

shown in figure 4.6 Thus by incorporating this tree normalization mechanism, we are able

to eliminate the redundancies presented by isomorphic machines, unused state machines,

empty tape machines, and mirror machines from the Busy Beaver search space.

4.1.3 Additional Redundancies

Ross (2003) also encodes detection mechanisms for two additional redundancies in

the search space that cannot be directly encoded in the tree normalization strategy but

instead must be implemented as a separate component:

Simple non-productive transitions are transitions that read a symbol and then write

the same symbol onto the tape. Ross explains in (Ross 2003) that machines with

these transitions can be pruned from the search space.

Complex non-productive transitions are similar to their simple counterpart except

they are stretched out into two sequential transitions. Thus, as it is explained by

Ross (2003): “effectively, the first transition replaces the symbol s with the symbol

55This could easily have also been solved by forcing first move to the left. This was simply an arbitrary
choice made by Ross (2003).
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Figure 4.6: The 3 Start Machines

s′ and the second transition reverses this action.” Machines with such properties

are similarly redundant.56

Ross explains in (Kellett et al. forthcoming) that these optimization techniques

described including the tree normalization schema as well as the non-productive transition

redundancy detection mechanisms produce an effectively complete and optimal search

space that is a greater than 99.9999999% reduction in the search space for Σ(6)! Thus the

foundation is in place for us to press forward in our assault.

4.2 Non-Halt Detection Mechanisms

As has already been discussed in section 2.3.3, clearly the greatest barrier in calculat-

ing the value of the Busy Beaver function for a particular value of n using our approach is

56We invite the reader to see (Ross 2003) for a more thorough explanation of these redundancies as well
as the tree normalization schema described in section 4.1.2.
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the determination of whether a machine halts. Despite the hopelessness of our “dream” de-

scribed at the end of said section (2.3.3), we have breathed new hope into the enumeration

possibilities of the set of non-halt detection routines {NH0, NH1, NH2, . . .} in chapter 3.

Thus, inspired by the brilliant work presented in (Lin & Rado 1964, Brady 1983, Machlin

& Stout 1990),57 we begin our barrage on enumerating this set:

The following adapts elements of discussions in (Brady 1983, Machlin & Stout

1990).58 We use a modified notation from the one found in (Machlin & Stout 1990)

to represent Turing machines and their state at particular points in time: M and M c are

used to represent a Turing machine and its corresponding mirror machine (see sect. 4.1.1)

respectively. A word or tape component is defined as an arbitrary length continuous se-

quence of characters on the tape and is represented by [X]59. If a machine is in state

s, it is represented on the tape as a subscript to indicate its location: [sX] represents a

machine in state s reading the left most symbol of X; [Xs] represents a machine in state

s reading the right most symbol of X; s[X] represents a machine in state s reading the

symbol directly to the left of the leftmost symbol of X; and likewise [X]s represents a ma-

chine in state s reading the symbol directly to the right of the rightmost symbol of X. 0∗

represents an infinite sequence of 0’s and [X]i represents a sequence of i X’s concatenated

together.

4.2.1 Back Tracking

The objective of the backtracking non-halt detection algorithm is to prove that a

machine can never reach a set of conditions in which it does, or could potentially halt.

Given the particular definition of a Turing machine used in the Busy Beaver problem (n-

states defined on a binary alphabet), there are exactly 2n possible {state, symbol} pairs

for which a transition can possibly be defined. In addition, the only possible way in which

a machine can halt is if it reaches a set of conditions (represented as a {state, symbol}

57It should be noted that the three works mentioned here all deal with the quintuple formulations of the
Busy Beaver problem. The corresponding non-halt behaviors described, however, are still relevant to the
quadruple formulations.

58The initial non-halt behaviors presented in this section are directly derived from Brady’s (1983) original
work as well as Machlin & Stout’s (1990) derivative efforts. Specifically, our base definitions of backtrackers,
simple loops, Christmas trees, and counters are adapted from the corresponding presentation of these
behaviors in (Machlin & Stout 1990). Additional modifications of these behaviors as well as other unique
non-halt patterns presented later are the result of our original work. (It should be noted, though, that
Brady (1983) makes brief reference to some of these additional behaviors without describing them in
detail.)

59any symbol can be used to replace X in this word and naturally the same holds for any other mentioned
component of the machine
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Figure 4.7: Back Tracking example

pair) for which the transition is either a transition to the halt state, or in the case of

partially defined machines, does not exist at all.60 The backtracking algorithm, therefore,

iterates through every {state, symbol} pair which has one of these two properties and

“backtracks” to see if it is possible to reach these conditions.

4.2.1.1 Back Tracking Example

Consider the machine in fig. 4.7. Given the synopsis of the backtracking algorithm

stated above, we immediately turn our attention to those {state, symbol} pairs for which

there is either a transition to the halt state defined or no transition at all. This particular

machine is fully defined, so there are therefore no pairs for which there is no transition.

There is one transition to the halt state however, (in state 0, reading a 1) and therefore

our test set of conditions contains only one pair, namely {0, 1}

A simple visual analysis of this machine induces the realization that if the machine

is to halt, at some point during execution, the following must hold:

• the machine must be in state 3

• the machine must be reading a 1 at the read head

• a 1 must be to the direct left of the read head on the tape

• we combine these three conditions into a single representation of the tape at this

60In the case of partially defined machines, if a transition does not exist for a particular {state, symbol}
pair, a child machine could easily be created with a transition to the halt state defined on that pair
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time: 113
61

This is so because these conditions qualify as the only conditions which will induce

a transition into state 0, reading a 1 on the tape. We therefore have “backtracked” to

the pair {3, 1}. Applying the same procedure to this pair as we applied to {0, 1} above,

we establish the new state: 021, which the machine must enter at some point during

execution.

At this point, however, we must undergo an additional step to confirm whether or

not these conditions will in fact lead to the halt state. Running the machine for one

step on this partial tape configuration yields yet another partial tape configuration: 013.

This configuration, however, does not match the partial configuration 113 from which we

originally backtracked. 013 is the only tape configuration which will induce a transition

into state 3 reading a 1. However, it does not produce the correct tape configuration

necessary to continue on to the halt state. The machine, therefore, can never reach the

halt state and is a proven non-halter.

4.2.1.2 Back Tracking Formalization

Now that we have seen how the backtracking algorithm works in practice, we can

define the concrete algorithm implemented in our program. This algorithm, specified in

Algorithm 3 is adapted from that put forth by Machlin & Stout (1990) and as they so

gracefully put it: “While backtracking can be useful, it cannot be guaranteed to always

stop since otherwise it would supply a solution to the halting problem.” Intuitively,

therefore, some non-halting Turing machines cannot be proven as such by this procedure.

Attempts to apply this procedure to these machines causes the algorithm to “infinitely

backtrack.” As a result of this problem, we are forced to specify a step limit pertaining

to how far the procedure is allowed to “backtrack.” If this limit is reached, the results are

also inconclusive.

4.2.2 Subset Loops

The subset loop detection heuristic is perhaps the simplest of the non-halt routines

because it requires absolutely no knowledge of the input tape or execution of the machine.

61From herein, we will represent partial tape configurations in this format. Namely, the contents of the
tape is some sequence of 1’s and 0’s, and the current state is represented as a subscript at the position of
the current read head on the tape
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function: Backtracker(M)

foreach {state, symbol} pair a in the set of pairs as specified in sect. 4.2.1 do1

Construct a local tape configuration x which must exist in order for2

machine M to perform the transition defined for a
Backtrack(a,x)3

end4

if every {state, symbol} pair in the above set produces a false return value5

when backtracking then
The machine cannot possibly halt and is classified as a non-halter6

else7

The proof fails and the results are inconclusive8

end9

function: Backtrack(b, y)
let b be a {state, symbol} pair parameter and y be a local tape configuration10

parameter in
foreach {state, symbol} pair c for which there is a transition defined that11

terminates in the state of b do
Construct a local tape configuration z such that:12

(a) the transition defined for c will be performed on this tape13

(b) performing this transition results in a local tape that matches y14

if such a tape cannot possibly be created then15

return false16

else17

return Backtrack(c,z)18

end19

end20

endlet21

Algorithm 3: Backtracking non-halt detection algorithm

A representation of the state/transition diagram is all that is necessary. Formally, a

machine can be classified as a subset loop if all of the following hold:

• There is a set of states s such that for each state in s, a transition for each symbol

in the alphabet (in our case just the binary alphabet {0,1}) is defined.

• Every transition defined from a state in s terminates in a state in s.

• At some point during execution, the machine enters one of the states in s.

This definition is very intuitive and it is easy to see that setting s = {1, 2, 3, 4, 5}

in fig. 4.8 satisfies the first two conditions. The third condition, however, on the surface

appears to require execution of the machine to confirm. This is not the case:
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start 0

halt1

1

0:1

2
1:R

4

0:L

3
0:R

1:L

1:R

0:R

1:L

5

0:R

1:L

0:L

Figure 4.8: Subset Loop machine

Recall from sect. 4.1.2 our tree normalization schema. Because of the mechanisms

employed with this approach, for every machine generated by our solution, all defined

transitions are guaranteed to be used at some point during execution.62 As a result, if a

set s such as the one above exists, at some point during execution each transition defined

from a state in s is guaranteed to be used. The third condition, therefore, trivially follows

from this fact. In the interests of preventing redundancy, refer to sect. 4.1.2 for additional

clarification.

4.2.3 Simple Loops

Generally speaking, a Turing machine that can be classified as a simple loop moves

the read head in a generally leftward or generally rightward direction in some infinite,

repeatable fashion. More formally, a Turing machine M is classified as a simple loop if it,

or its corresponding mirror machine M c has the following properties:

1. At some point a during execution, the following tape configuration is reached:

0∗[C][Xs][Y ]0∗.

2. One of the following properties holds:

(a) The same tape configuration is reached at some later point.

(b) The tape configuration 0∗[C][V ][Xs][Y ]0∗ is reached at some later point b and

between points a and b, the read head never moves past the left edge of the

62The tree normalization machine enumeration strategy generates machines by adding transitions to
partially run machines. When a partially run machine reaches a {state, symbol} configuration where no
transition is defined, it branches off, creating a machine for each possible transition that would be defined
for this state and symbol. Therefore, every transition that is created in this manner is guaranteed to be
used at some point during the execution of the machine.
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 1110   State 2
 1110   State 3
 1110   State 0
 1010   State 3
 1010   State 3
01010   State 0
11010   State 1
11010   State 2
11010   State 0
11110   State 1
11110   State 2
11110   State 0
11111   State 1
111110  State 2

= 0*[U][Vs]0*

= 0*[U][X][Vs]0*

Figure 4.9: Christmas Tree execution

initial X (which would incidentally be the same position as the left edge of the

resulting V ).

The first case is quite simple to grasp. If the tape, read head, and current state are

all identical at two different points during execution, it is an obvious infinite loop and will

never halt. The second case is similarly intuitive. Consider the final condition which states

that the read head may never move past the left edge of the initial X. Because of this, it

is clear that the machine will iteratively generate additional V elements ad infinitum.

4.2.4 Christmas Trees

“Christmas Tree” machines, studied rigorously by both Brady (1983) and Machlin

& Stout (1990), are classified as non-halters due to a repeatable back and forth sweeping

motion which they exhibit on the tape. A behavior that we have already touched upon

in section 3.3.4, the pattern of the most basic form of Christmas trees is quite easy to

recognize. The machine establishes two end components on the tape and one middle

component. As the read head sweeps back and forth across the tape, additional copies of

the middle component are inserted while maintaining the integrity of the end components

at the end of each sweep.

Consider the partial execution of a 4-state Christmas tree machine denoted in fig. 4.9.

This illustration represents the state of the tape between two successive right extremum

in the machine’s back and forth sweeping pattern. Clearly, at the first extremum point,
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 1111111110   State 2
 1111111110   State 3
 1111111110   State 0
 1111111010   State 3
 1111111010   State 3
 1111111010   State 0
 1111101010   State 3
 1111101010   State 3
 1111101010   State 0
 1110101010   State 3
 1110101010   State 3
 1110101010   State 0
 1010101010   State 3
 1010101010   State 3
01010101010   State 0
11010101010   State 1
11010101010   State 2
11010101010   State 0
11110101010   State 1
11110101010   State 2
11110101010   State 0
11111101010   State 1
11111101010   State 2
11111101010   State 0
11111111010   State 1
11111111010   State 2
11111111010   State 0
11111111110   State 1
11111111110   State 2
11111111110   State 0
11111111111   State 1
111111111110  State 2

= 0*[U][X][X][X][Vs]0*

= 0*[U][X][X][Xq][V’]0*

= 0*[U][X][Xq][Y][V’]0*

= 0*[U][Xq][Y][Y][V’]0*

= 0*[Uq][Y][Y][Y][V’]0*

= 0*[U’][rY][Y][Y][V’]0*

= 0*[U’][Z][rY][Y][V’]0*

= 0*[U’][Z][Z][rY][V’]0*

= 0*[U’][Z][Z][Z][rV’]0*

= 0*[U’][Z][Z][Z][V’’s]0*

Figure 4.10: Christmas Tree execution2

the tape contains two end components (respectively labeled U and V ); after one complete

sweep, an additional X component is generated while the original U and V components

remain intact. Also, the machine is in the same state (2) at both points. Examination of

additional successive sweeps yields the finding that this pattern continues to hold. Extrac-

tion of this phenomenon alone, however, does not constitute a proof of non-haltingness, it

only presents the possibility. Further investigation is required:

4.2.4.1 Christmas Tree Behavior

Establishing the above behavior satisfies the first step towards “Christmas Tree”

detection. Let us now consider the same machine referenced above except at a later point

during its execution in fig. 4.10. At this point we see that the machine has introduced
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three X components capped by the U and V components respectively on each end. As

the read head sweeps across the tape in the leftward direction, it methodically transforms

each X component into identical Y components, entering the next X component in the

same state q each time. Additional X components inserted in the middle, therefore, would

be transparently passed over and have no effect on the general behavior of the machine.

The same properties hold as the machine sweeps back across the tape transforming each

Y component into a Z component, while maintaining the same state of the machine r as

it enters each successive Y component.

At the completion of this sweep, however, we find ourselves in a somewhat useless

state of 0∗[U ′][Z][Z][Z][V ′′

s ]0∗. We have confirmed that additional X components will

generate the same, one sweep pattern; however, this pattern leaves us with all of the X

components translated into Z components and two alternate caps on each end. It turns

out that the key to the “Christmas Tree” behavior is the make-up of the U ′ and V ′′

components after such a sweep as the one shown in fig. 4.10. At the completion of the

sweep, the U ′ component must be made up of the original U as well as an auxiliary Z1

component and the V ′′ component must be made up of an auxiliary Z2 component as well

as the original V . In addition, [Z1][Z][Z][Z][Z2] = [X][X][X][X] must hold.

4.2.4.2 Christmas Tree Formalization

Considering the above behaviors, we are now ready to outline the complete, formal

requirements for a machine to be classified as a “Christmas Tree” non-halter as specified

by Machlin & Stout (1990):

Formally, a Turing Machine M is a Christmas tree if either M or M c satisfy the
following conditions for some . . . state s:

1. There are . . . words U , V , and X such that the tape configuration at some time
is 0∗[U ][Vs]0

∗, and at some later time is 0∗[U ][X ][Vs]0
∗.

2. The following conversions hold, where X , X ′, Y , Y ′, Z, V , V ′, V ′′, U , and U ′

are . . . words and q and r are . . . states (the symbol ⇒ means that M transforms
the left-hand side into the right-hand side after some number of steps):

• [X ][Vs]0
∗ ⇒q [X ′][V ′]0∗

• [Xq][X
′] ⇒q [X ′][Y ]

• 0∗[Uq][X
′] ⇒ 0∗[U ′][Y ′]r

• [Y ′][rY ] ⇒ [Z][Y ′]r
• [Y ′][rV

′] ⇒ [Z][V ′′

s ]

3. [U ′][Z]i[V ′′] = [U ][X ]i+1[V ] for all i ≥ 1.

Note the addition of the X ′ and Y ′ components. While they are often identical to

the Y and Z components respectively, they allow for a more robust transformation from



59

   Single-Sweep

0*[U][X][X][X][Vs]0*

0*[U’][rY][Y][Y][V]0*

0*[U’][Z][Z][Z][V’’s]0*

0*[U][X][X][X][X][Vs]0*

           equivalent to

   Double-Sweep

0*[U][X][X][X][Vs]0*

0*[U’][rY][Y][Y][V]0*

0*[U’][Z][Z][Z][V’’t]0*

0*[U’’][vM][M][M][V’’’]0*

0*[U’’][N][N][N][V’’’’s]0*

0*[U][X][X][X][X][Vs]0*

             equivalent to

Figure 4.11: Comparison of cycles between single-sweep and double-sweep
Christmas trees

X cells to Y cells and from Y cells to Z cells. This increases the scope of the detection

routine.

4.2.5 Multi-sweep Christmas Trees

Multi-sweep Christmas Trees exhibit the same “Christmas Tree” like behavior as the

above described Christmas Trees. As their name suggests, however, these machines require

multiple sweeps back and forth across the tape before a repeatable pattern is established.

Consider the basic cycle of a single sweep Christmas Tree: an arbitrary length sequence

of X’s is capped on each end by a U and a V component with the read head on the right

edge of V . The machine sweeps across the tape to the left, converting each X into a Y ,

and on the return trip, converts the Y ’s into Z’s. This completes one cycle as the resulting

configuration is equivalent to the original configuration with an additional X inserted into

the center.

Fig. 4.11 illustrates the difference between the iterative cycle of a single-sweep ma-

chine and the corresponding cycle in a double-sweep machine. The first sweep looks nearly

identical. However, when the read head reaches the right extremum after converting each

Y component into a Z component, notice that it is no longer a requirement that the ma-
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chine be back in the original state s. This is so because the machine sweeps back across

the tape once more, converting Z’s into M ’s and M ’s into N ’s before completing a full

cycle and returning to the original state s. It is only after these two full sweeps that the

machine reaches a state equivalent to the original with one additional X included.

4.2.5.1 Double-sweep Christmas Tree Formalization

Brady (1983) pioneers the concept of a double-sweep Christmas tree referring to

them as “alternating Christmas trees.” He does not, however, formalize their behavior,

only making quick reference to their similarities to Christmas trees. It is clear that double-

sweep Christmas trees are intimately related to Christmas Trees. In fact, the rules which

govern their behavior are essentially identically to two copies of the specification outlined

in sec. 4.2.4.2 concatenated together. Thus we define these rules:

A machine M is a double-sweep Christmas tree if either M or M c satisfy the

following conditions for some state s:

1. There are nonempty words U , V , and X such that the tape configuration

at some time is 0∗[U ][Vs]0
∗, and at some later time is 0∗[U ][X][Vs]0

∗.

2. The following conversions hold, where X, X ′, Y , Y ′, Z, Z ′, M , M ′, N ,

V , V ′, V ′′, V ′′′, V ′′′′, U , U ′, and U ′′ are words and q, r, t, u, and v are

states (the symbol ⇒ means that M transforms the left-hand side into

the right-hand side after some number of steps):

• [X][Vs]0
∗ ⇒q [X ′][V ′]0∗

• [Xq][X
′] ⇒q [X ′][Y ]

• 0∗[Uq][X
′] ⇒ 0∗[U ′][Y ′]r

• [Y ′][rY ] ⇒ [Z][Y ′]r

• [Y ′][rV
′] ⇒ [Z][V ′′

t ]

• [Z][V ′′

t ]0∗ ⇒u [Z ′][V ′′′]0∗

• [Zu][Z ′] ⇒u [Z ′][M ]

• 0∗[U ′

u][Z ′] ⇒ 0∗[U ′′][M ′]v

• [M ′][vM ] ⇒ [N ][M ′]v

• [M ′][vV
′′′] ⇒ [N ][V ′′′′

s ]

3. [U ′′][N ]i[V ′′′′] = [U ][X]i+1[V ] for all i ≥ 1.
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  Leaning Christmas Tree

0*[C][N][N][U][X][X][Vs]0*

0*[C][N][N][N][U’][rY][Y][V]0*

0*[C][N][N][N][U’][Z][Z][V’’s]0*

0*[C][N][N][N][U][X][X][X][Vs]0*

                    equivalent to

Figure 4.12: Representative cycle of a leaning Christmas tree

Clearly the first five transformations refer to operations during the first sweep, while

the second five transformation refer to operations during the second sweep. In addition,

this definition could easily be extended for three sweeps, four sweeps, etc. Our current

implementation generalizes the extension allowing us to detect multi-sweep machines of

an arbitrary number of sweeps.63

4.2.6 Leaning Christmas Trees

Leaning Christmas trees escape the original Christmas tree detection routine be-

cause they lean in a sense that on each successive sweep, they transpose the resulting

configuration along the tape in a generally rightward (or leftward) direction. More specif-

ically, imagine a tape configuration identical to that of which begins a sweep in a plain

Christmas tree (0∗[U ][Vs]0
∗). Leaning Christmas trees begin with an additional constant

component C on the leftmost boundary (or rightmost for the corresponding mirror speci-

fication) of the non-zero portion of the tape. After one complete sweep, 0∗[C][U ][Vs]0
∗ is

transformed into 0∗[C][N ][U ][X][Vs]0
∗. The machine then follows nearly the same trans-

formation rules specified for Christmas trees. However, when the read head reaches the

U component, it transforms a portion of itself into an additional N component. When it

returns back to its new right extremum, it has effectively transposed the main components

(U , V , and X’s) rightward along the tape.

63Our multi-sweep detection routine requires an argument to denote the number of sweeps to check
for. It is not, therefore an all encompassing “multi-sweep detection routine” but instead a mechanism to
individually check for double-sweep, triple-sweep, quadruple-sweep, etc. machines as needed.
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Refer to fig. 4.12 for further clarification on this leaning tree pattern. The set

of transformations for leaning Christmas trees is identical to that of plain Christmas

trees with the exception of one. 0∗[Uq][X
′] ⇒ 0∗[U ′][Y ′]r is intuitively replaced with

[N ][Uq][X
′] ⇒ [N ][N ][U ′][Y ′]r.

4.2.7 Counters

Counters manipulate the tape in a way such that at particular milestones during

execution, dedicated portions of the tape are representative of a binary number. At

successive milestones, the number is incremented; thus the machine simulates a binary

counter which counts to infinity. Brady (1983) studies counters found in the 4-state,

quintuple variation of the Busy Beaver problem. Our initial discussion is based closely on

these studies.

The 1’s and 0’s of a binary number are represented as equal length words X and

Y respectively in a binary counting Turing machine. In addition, we must establish the

notion of an auxiliary word Z which is of equal length to X and Y and is used in the

interim conversion of the tape from one binary number to the next. We also require the

concept of a “blank” word B which consists of a sequence of 0’s equal in length to X, Y ,

and Z. In this sense, the B word is often identical to the X word. Finally, the milestone

as mentioned above comes in the form of an end word E which the read head uses as a

checkpoint to begin and end the conversion of the tape from one binary number to the

next.

Considering these definitions, a binary counter Turing machine (or its corresponding

mirror machine) converts an initially blank tape to a sequence that looks like the following:

0∗[E]c0
∗. Incidentally, this can also be represented as follows: 0∗[E][cB][B]∗. It is at this

point that our checkpoint has been established and the conversion of the tape begins. In

order to satisfy the requirements of a binary counter, the following conversions must hold:

• [cX] ⇒r [Y ]

• [cY ] ⇒ [Z]c

• [Zr] ⇒r [X]

• [cB] ⇒r [Y ]

• [Er] ⇒ [E]c
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0         State 0
1         State 1
10        State 2
10        State 2
10        State 1
100       State 3
1000      State 4
1001      State 0
1001      State 2
1001      State 2
1001      State 2
1001      State 1
1001      State 3
1001      State 4
1000      State 1
10000     State 3
100000    State 4
100001    State 0
100001    State 2
100001    State 2
100001    State 2
100001    State 2
100001    State 2
100001    State 1
100001    State 3
100001    State 4
100101    State 0
100101    State 2
100101    State 2
100101    State 2
100101    State 1
100101    State 3
100101    State 4
100001    State 1
100001    State 3
100001    State 4
100000    State 1
1000000   State 3
10000000  State 4
10000001  State 0
10000001  State 2
10000001  State 2
10000001  State 2
10000001  State 2
10000001  State 2
10000001  State 2
10000001  State 2
10000001  State 1
10000001  State 3

= 0*[E][cB][B]*

= 0*[Er][Y][B]*
     checkpoint [1]

= 0*[E][cY][B]*

= 0*[E][Z][cB][B]*

= 0*[E][Zr][Y][B]*

= 0*[Er][X][Y][B]*
     checkpoint [01]

= 0*[E][cX][Y][B]*

= 0*[Er][Y][Y][B]*
     checkpoint [11]

= 0*[E][cY][Y][B]*

= 0*[E][Z][cY][B]*

= 0*[E][Z][Z][cB][B]*

= 0*[E][Z][Zr][Y][B]*

= 0*[E][Zr][X][Y][B]*

= 0*[Er][X][X][Y][B]*
     checkpoint [001]

= 0*[E][cX][X][Y][B]*

Figure 4.13: Execution of a counter Turing machine



64

Brady refers to these c and r states as “carry” and “return” signals. A carry signal

sends the read head in a rightward direction along the tape and a return signal sends the

read head back to the checkpoint. The transformations specified above guarantee that

at each instance when the return signal returns to the checkpoint, the contents on the

rest of the tape are representative of the next binary number in the sequence. The final

transformation ensures that the checkpoint word E takes the return signal and reflects

back a carry signal while maintaining the integrity of itself. Refer to fig. 4.13 for an

illustration of this process.64

4.2.7.1 Counter Modifications

Using the above specification (which is identical to that described by Brady) as a

basis for our counter detection routine generates some curious results. Several machines

whose execution appear to follow the above somehow escape the detection routine and are

classified as holdouts. Further investigation reveals that the reflection of a carry signal by

an X word generates an incorrect return signal in these particular machines. However,

when this signal is sent to the Z word, the signal corrects itself. Similar behavior is

observed on a few other machines in which a carry signal sent to a Y word sends an

auxiliary return signal to the preceding Z word before receiving the correct carry signal

from the Z word.

This situation can be remedied considering the following truth: when a carry signal

is generated, the word immediately preceding the read head at this point is always either

a Z word or an E word. Therefore, we can modify the transformations for a carry signal

on X and Y by prepending these two possibilities. The first and second transformations

defined above are thus replaced with the following:

• [Z][cX] ⇒r [X][Y ]

• [E][cX] ⇒ [E][cY ]

• [Z][cY ] ⇒ [Z][Z]c

• [E][cY ] ⇒ [E][Z]c

This minor modification to the grammar increases the scope of Brady’s original

grammar as described above.

64Each checkpoint in this machine is representative of the next number in a binary sequence if the
sequence of X and Y words (i.e. 0 and 1 bits) are reversed. In this sense this machine could be considered
a “mirror” counter machine.
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4.3 Revised Attack Strategy, Results, and Records

Recall from section 2.3.3 our proposed solution to Σ(n) specified in Algorithm 1.

In light of the behavioral patterns that can be explicitly shown to exhibit non-halting

behavior just described in section 4.2, we can now modify our basic algorithm designed to

solve Σ(n). Refer to Algorithm 4 for this presentation. The core of this algorithm is the

set

{NH0, NH1, NH2, NH3, . . .}

which we have already introduced in section 2.3.3. This set, referred to in abbreviated form

as NH, is proposed to represent an ever increasing set of non-halting behaviors. Once

again, we are faced with issues of Turing-computational impossibility. As has already

been addressed in our defense of Penrose’s argument in section 3.2, we cannot hope to

encapsulate all mechanisms of human understanding available to demonstrate that Turing

machines do not halt into one well defined procedure. If Algorithm 4 has any hope of

being a solution to the Busy Beaver problem, it would appear to be the case that we are

attempting to attain just that in NH.

This is not so, however. Consider what Algorithm 4 actually entails. Clearly, on line

6 we suggest an ever increasing set of well defined, proven non-halt behaviors that are used

to question the non-haltingness of some Turing machine t. Consider, however, how this

set is achieved. It is in fact continually built by the statement in line 20 of the algorithm.

What is important to note is that line 20 implies direct intervention by humans. The intent

of the algorithm is for humans to continually add non-halt behaviors to NH by examining

and analyzing unproven holdout machines. Thus, at any particular point in time, NH

encapsulates some set of non-halt behaviors that can be ascertained by the mechanisms

of human thought. However, it can never encapsulate all of them because it is an infinite

set being enumerated by humans and not some Turing-computational machine.65 At any

particular point in time, therefore, it is simply a finite subset of this infinite set.

4.3.1 Implementation Methodology

As we have mentioned previously, our attack builds off of a previous program pro-

vided by Ross (2003). This original program is written in C++ and encapsulates the

Turing machine enumeration strategy described in section 4.1 using the tree normaliza-

65We have already addressed the potential for human enumeration capability exceeding the Turing limit
in sections 3.1 and 3.2. Thus while we do not claim that our revised proposed algorithm for Σ(n) is a cut
and dry solution, we do claim and defend the possibility.
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TMEnumeratorTMEvaluator

nonHaltDetection

start

pushRootOntoStack

popTMFromStack

generateNextChild

pushChildOntoStack

NEXT CHILD EXISTS

NO MORE CHILDREN

resetMachine

performTransition

HALT IN NON-HALT STATE

RUNNING

checkForCandidacy

HALT

holdout

STEP LIMIT REACHED

nonHaltFilters

NEXT TM EXISTS

end

STACK IS EMPTY

FALSE

classifyTM

TRUE

Figure 4.14: Representation of the program control sequence used in our im-
plementation
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function: Σ(n)

repeat1

H = ∅2

C = ∅3

Using a tree normalized approach, enumerate a set S of n-state Turing4

machines that behaviorally represents the entire set of n-state machines
foreach machine t in S do5

Attempt to show that t exhibits one of the defined non-halting behaviors6

in NH
if The attempt to prove t a non-halter fails then7

Prepare input tape x as an infinite bi-directional tape of all 0’s8

Run t on x for a predetermined limit of steps9

if t halts before this step limit is reached then10

Consider the resulting output tape x′11

if x′ satisfies the conditions specified in section 2.2.1.3 then12

Add t to our candidate set C13

end14

else15

Add t to our holdout set H16

end17

end18

end19

Examine each machine in H and define new non-halting behaviors and20

detection techniques
Add these new behaviors to our non-halting behaviors NH21

until |H| = 022

Return the productivity of the most productive machine in C (i.e. the machine23

that produces the most contiguous 1’s on the tape)

Algorithm 4: Revised proposed solution to Σ(n)

tion techniques. Thus, Ross’s initial attack incorporates an algorithm similar to that

described in Algorithm 1, except in place of detecting non-halters in line 3 of this algo-

rithm, he simply specifies a step limit for execution of each Turing machine. Thus if the

machine has not halted after this arbitrary number of steps is made, it is considered a

non-halter and discarded from consideration.

As a remedy for this problem, we have encoded the non-halt detection mechanisms

described in section 4.2 as C++ routines that mesh into Ross’s original program. Refer

to fig. 4.14 for a graphical representation of the overarching approach. This figure adapts

our proposed Algorithm 4 presented above. We use a stack-based approach, beginning

the stack with the three machines enumerated in fig. 4.6. At each step, the machine M

at the top of the stack is popped off and sequentially sent through the non-halt detection
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routines described above. The order in which the routines are applied is based largely on

simulation tests to determine which routines are most efficient and which behaviors are

most prominent in the search space. We define the sequence as follows:

1. Back tracking

2. Subset Loop

3. Simple Loop

4. Single-Sweep Christmas Tree

5. Double-Sweep Christmas Tree

6. Leaning Christmas Tree

7. Triple-Sweep Christmas Tree

8. Quadruple-Sweep Christmas Tree

9. Quintuple-Sweep Christmas Tree

10. Additional Multi-Sweep Christmas Trees as needed66

11. Counter

If any of the above routines confirm M as exhibiting its behavior specification, M is

immediately classified as such and discarded. Otherwise, the machine is reset and passed

on to the execution stage which is described succinctly in (Ross 2003):

M is run until such time as it halts or it reaches a predetermined step limit at which
time it is determined to be a holdout and not further considered. If M halts, then: If
M is a fully-defined machine, its productivity is evaluated and standard positioning
taken into account; if this is a new most-productive (or maximal shift) machine, then
it is recorded; it is discarded otherwise. If, on the other hand, M is a partially-
defined machine then its children in the normalised tree are generated and pushed (in
theoretically arbitrary order) onto the stack. The search terminates when the stack is
empty, at which time a search equivalent to . . . [exhausting the search space] . . . has
been completed.

What should be noted is that the inclusion of the non-halt detection routines into

Ross’s original program (as opposed to the basic step limit approach) allows us to increase

66as n increases, additional sweep Christmas Tree detection routines are and will be required to account
for every machine in the search space
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Category n = 2 n = 3 n = 4 n = 5 n = 6

Standard Halt 6 80 2264 103095 6640133

Non-standard Halt 2 76 3844 271497 24911677

s:s-transition 18 469 24425 1872797 189304589

s:s′-s′:s-transition 10 237 11428 806981 76717404

Write-1 5 5 5 5 5

Move-R 4 5 5 5 5

Empty-tape 0 8 319 18527 1882827

Back-tracker 23 865 49481 4008364 403910416

Subset loop 0 0 146 11013 2582783

Simple loop 5 130 5605 381736 48492276

Christmas tree 0 2 156 13987 2166668

Double sweep Christmas Tree 0 0 23 2356 419598

Leaning Christmas Tree 0 0 0 69 23129

3-Sweep Christmas Tree 0 0 0 470 77740

4-Sweep Christmas Tree 0 0 0 76 17345

5-Sweep Christmas Tree 0 0 0 0 2156

6-Sweep Christmas Tree 0 0 0 0 1352

7-Sweep Christmas Tree 0 0 0 0 345

8-Sweep Christmas Tree 0 0 0 0 65

Counter 0 0 0 113 25678

Holdout 0 0 0 98 42166

Total 73 1877 97701 7491189 757218357

Table 4.1: Distribution of Normalized Machines for implicit formulations (B
and O)

the subsequent step limit of the execution stage as it has just been described.67 The result

is that we are able to establish much more productive records for any one particular n

even if we cannot completely confirm Σ(n) for this n.

4.3.2 Results

Given our defined strategy and implementation mechanisms, we now turn to the

overall distribution of the resulting set of machines in terms of halters, non-halters (classi-

fied according to the algorithms specified in sect. 4.2), and machines pruned from the tree

(according to the rules outlined in sect. 4.1). Tables 4.1 and 4.2 respectively outline the

67The reason for this is purely due to the extremely time consuming nature of running each machine for
a large number of steps. If the step limit approach is used with a massive step limit, then every non-halter
will be run for this number of steps. However, by incorporating the non-halt detection mechanisms into
the algorithm, only the “holdouts” are run all the way to the step limit. Thus since the non-halt routines
eliminate most of the non-halters (and in the cases of n = 1, 2, 3, 4 all of them), then only a few machines
must be run to this limit.
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Category n = 2 n = 3 n = 4 n = 5 n = 6

Standard Halt 13 229 7224 350979 23328811

Non-standard Halt 12 325 15389 1061240 96749364

s:s-transition 18 469 24425 1872797 189304589

s:s′-s′:s-transition 14 286 12881 880534 82182812

Write-1 7 7 7 7 7

Move-R 6 7 7 7 7

Empty-tape 2 28 684 31122 2546483

Back-tracker 23 865 49481 4008364 403910416

Subset loop 0 0 146 11013 2582783

Simple loop 5 130 5605 381736 48492276

Christmas tree 0 2 156 13987 2166668

Double sweep Christmas Tree 0 0 23 2356 419598

Leaning Christmas Tree 0 0 0 69 23129

3-Sweep Christmas Tree 0 0 0 470 77740

4-Sweep Christmas Tree 0 0 0 76 17345

5-Sweep Christmas Tree 0 0 0 0 2156

6-Sweep Christmas Tree 0 0 0 0 1352

7-Sweep Christmas Tree 0 0 0 0 345

8-Sweep Christmas Tree 0 0 0 0 65

Counter 0 0 0 113 24678

Holdout 0 0 0 98 42166

Total 100 2348 116028 8614968 851873790

Table 4.2: Distribution of Normalized Machines for explicit formulations (P
and R)

overall statistics for the implicit formulations of the problem (B and O) and the explicit

formulations (P and R).

Recall from sect. 4.3.1 the implementation methodology for the non-halt detection

filter. When a machine is tested for non-haltingness, the detection routines are applied

sequentially in the order that they appear in tables 4.1 and 4.2. As a result, non-halters

are classified according to the routine for which they test positive first. Significant overlap,

therefore, is likely among the categories. Regardless, confirmation of membership in any

single one of the non-halting classifications is conclusive evidence to render a machine

a proven non-candidate which is sufficient given our specified goal. Additional analysis

in this area may be required in order to optimize run-time and possibly re-sequence the

non-halt filters when attacking the problem for higher values of n such as 7, 8, and beyond.

In any case, the category of most interest is clearly the Holdout category. Holdouts

are machines which have tested negative for all non-halt detection filters, and then have
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n B(n) b(n) O(n) o(n) P (n) p(n) R(n) r(n)

1 1 1 1 1

2 2 3 2 3 2 4 2 4

3 3 13* 3 13* 4* 14* 4* 14*

4 5 31* 8 37* 7* 32* 8* 38*

5 ≥ 11 ≥ 57* ≥ 15 ≥ 111 ≥ 16* ≥ 112* ≥ 16* ≥ 112*

6 ≥ 25 ≥ 255 ≥ 70* ≥ 3985* ≥ 41* ≥ 1256* ≥ 71* ≥ 3986*

Table 4.3: Status of Σ(n) records from (Ross 2003)

n B(n) b(n) O(n) o(n) P (n) p(n) R(n) r(n)

1 1 1 1 1

2 2 3 2 3 2 4 2 4

3 3 13* 3 13* 4* 14* 4* 14*

4 5 31* 8 37* 7* 32* 8* 38*

5 ≥ 11 ≥ 57* ≥ 15 ≥ 111 ≥ 16* ≥ 112* ≥ 16* ≥ 112*

6 ≥ 25 ≥ 255 ≥ 239* ≥ 41606* ≥ 163* ≥ 27174* ≥ 240* ≥ 41607*

Table 4.4: Updated Σ(n) records

also been run to the predefined step limit without halting. For a particular value of n, if

the number of these “unaccounted for” machines equals 0, then the candidate champion

for this n becomes no longer simply a candidate champion, but a proven Busy Beaver,

whose productivity is the confirmed value of Σ(n).68 As is illustrated in Tables 4.1 and 4.2,

the present effort has confirmed Σ(n) for n = 2, 3, 4, and very nearly 5.

4.3.3 Records

We now turn to the established values and records for Σ(n). Table 4.3 displays

Ross’s (2003) results up through n = 6 using his original program that includes only a

step limit mechanism for conjecturing that a machine is a non-halter. The records marked

with an asterisk are those that had been newly established by his efforts. Table 4.4

indicates our updated version of this table using the previously described program with

the non-halt detection routines embedded in it as well. In this case, the marked records

are those that have been established by our combined Ross-Kellett effort. As mentioned

earlier, the values up through n = 4 are confirmed as truths due to the classification of

every machine in the search space into an identifiable category.

68We generalize the four variants of the problem for simplicity’s sake. In this case Σ(n) is representative
of the particular formulation for which the statistics apply. In general, however, if a result is confirmed for
one particular formulation for the value n, it is likely confirmed for all four.
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4.4 Holdout Patterns: Human Perceptual Power at Work

Most of the behaviors described above in section 4.2 are defined more specifically as

sets of concrete transitions that transform predefined localized portions of the tape into

certain configurations. If it can be demonstrated that the set of transitions will repeat

infinitely, and that a particular machine transforms the tape in a manner identical to

each of the transitions in the set, than the machine can be deemed a non-halter without

question. However, the immediately clear difficulty with this approach lies in identifying

the components that are defined in the set of transitions. As is shown in Tables 4.1 and 4.2,

we have confirmed the results of Σ(n) up through n = 4 but not yet 5. Algorithm 4 suggests

that we examine the holdouts that remain in search of new non-halt behaviors.

We therefore begin our analysis of the 98 holdouts69 with a subset that can be iden-

tified as exhibiting one of the behaviors defined above in section 4.2: Leaning Christmas

trees. These machines escaped the current detection routine because of certain difficulties

with the problem just described.

4.4.1 Leaning Christmas Trees

We refer the reader to section 4.2.6 which explicitly describes the behavior of leaning

Christmas trees. Since we do not originally formally describe the specification there, we

do so here for clarity:

A Turing Machine M is a Leaning Christmas tree if either M or its mirror M c

satisfy the following conditions for some state s:

1. There are words C, N , U , V , and X such that the tape configuration at

some time is 0∗[C][U ][Vs]0
∗, and at some later time is 0∗[C][N ][U ][X][Vs]0

∗.

2. The following conversions hold, where X, X ′, Y , Y ′, Z, V , V ′, V ′′, U ,

and U ′ are words and q and r are states (the symbol ⇒ means that M

69Note that for both the implicit formulations (B and O) and explicit formulations (P and R) of the
problem, there are the same number of holdouts defined in Tables 4.1 and 4.2. This is due to the tree
normalization mechanisms used to enumerate the relevant set of Turing machines described in section 4.1.
Since, in both cases, the holdout machines are those machines for which is has not yet been determined
whether or not they halt, no halting transitions/states have been defined for them. Thus while the implicit
and explicit formulations both have different halting requirements, the holdout machines are actually
partial machines that can be easily modified to contain the necessary halting specifications for each of the
respective formulations of the problem. The overall result of this discussion is that the set of holdouts for
both of the types of formulations is the same, and thus addressing the one set allows us to confirm the
results of all four formulations of the problem that we consider.
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transforms the left-hand side into the right-hand side after some number

of steps):

• [X][Vs]0
∗ ⇒q [X ′][V ′]0∗

• [Xq][X
′] ⇒q [X ′][Y ]

• [N ][Uq][X
′] ⇒ [N ][N ][U ′][Y ′]r

• [Y ′][rY ] ⇒ [Z][Y ′]r

• [Y ′][rV
′] ⇒ [Z][V ′′

s ]

3. [N ]i+1[U ′][Z]i[V ′′] = [N ]i+1[U ][X]i+1[V ] for all i ≥ 1.

This definition, while complex, is also relatively straight-forward. With an accurate

identification of the required words, it is easy to demonstrate whether or not a machine

transforms the tape exactly according to the transitions defined above. However, given

just an arbitrary Turing machine, how does one go about identifying these components?

The general strategy used in the current implementation is as follows:

1. Run the machine for an arbitrary number of steps to establish a sweeping motion

and account for any startup effects that may be out of line with the transitions

defined.

2. Determine the step counters of the points in execution where the machine reaches its

right extremum, or in other words when the configuration is 0∗[C][N ]i[U ][X]i[Vs]0
∗

for some i. Find these step counters for the next five extrema following the initial

startup of the machine.

3. Use the tape configurations at each extremum and compare them to extract the

components. For example comparing the first two extrema reveals the C, N , X, U ,

and V components by examining the differences between the two configurations.

4. The rest of the tape components can be derived by attempting to perform the above

transitions at the corresponding points where they should appear, and extracting

the additional components from these procedures. If at any point this fails, then the

entire proof fails and the machine cannot be classified as a leaning Christmas tree.

The main problem in this approach lies in the determination of the right extrema

in step 2. Because the left extremum of each sweep is not continually pushed outward

like in a standard Christmas tree, and instead indeterminately lies to the right of the
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previous left extremum, it is extremely difficult to determine when these right extrema

occur. This is especially true in machines that exhibit both leftward and rightward minor

motions during one major sweep in one direction across the tape. As a result, the current

implementation does not always properly identify these step counters in some machines

that are in fact leaning Christmas trees.

While the automated process is clearly difficult, identifying the components by hand

is time consuming but possible. After a thorough examination of the 98 holdouts, it was

determined that 10 of them (0, 1, 3, 9, 12, 13, 14, 32, 88, 95)70 are leaning Christmas

trees. A description of each of them can be found in Appendix A.71

4.4.2 Base 3 Counters

Intuitively, base 3 counters are extremely similar to the already established counter

behavior except for the one obvious difference. Instead of counting in representative binary

notation, they count in base 3. For completeness, we outline the full set of requirements

for a machine to be considered a base 3 counter. Unsurprisingly, it is extremely similar to

the original counter specification shown in section 4.2.7.

1. For machine M or its mirror M c, there are words E, A, B, C, T , and Z. In the

context of a base 3 counter, E represents the end cell that is used as the checkpoint.

A, B, and C are used to represent the values 0, 1, and 2 respectively in terms of a

base 3 number. T is a transitory word that occurs during the incrementing of the

representative number in between checkpoints. Finally, Z is a blank word which

consists of all 0’s and is of the same length as the A, B, C, and T words.

2. At some point during execution, the machine reaches the following configuration

where c is some state: 0∗[E][cZ][Z]∗.

3. The following transitions hold where r is also some state:

• [cA] ⇒r [B]

70Note that each holdout is assigned a numeric value in Appendices A and B. These values are assigned
according to the order in which each of the machines are generated in the enumeration strategy and
subsequently popped off of the stack described in section 4.3.1

71Explicit confirmations that each of these machines do in fact follow the leaning Christmas tree speci-
fication are not included for brevity. Such confirmations require the correct identification of the specified
words and states as well as explicit demonstration that each of the transitions and rules are followed ex-
actly to specification. Appendices A and B do, however, contain information about each of the 98 holdouts
including flow diagrams and their individual non-halt behavior classifications. For more information about
the explicit proofs of select machines, please contact the author of this paper.
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• [cB] ⇒r [C]

• [cC] ⇒ [T ]c

• [cZ] ⇒r [B]

• [Tr] ⇒r [A]

• [Er] ⇒ [E]c

This definition can clearly be extended for base 4, base 5, etc. counters by adding

additional components and transitions similar to those involved in the transformation of

the base 2 specification to that for base 3.

4.4.3 Alternating Counters

Alternating counters deviate from the behavior of ordinary counters by the behavior

of the transition that occurs when the carry signal c hits the blank word Z. In alternating

counters, the size of the Z word is smaller than the size of the words for the representative

one, two, and transitory words. Therefore, when the transformation occurs, the resulting

tape configuration is in an inconsistent state. As a result, each time this transition occurs,

the representative structure of the tape is modified in a similar fashion as the last step that

occurs in the Christmas tree behavior. Let us look at the specification of this behavior

more closely to clarify:

1. For machine M or its mirror M c, there are words E, E′, A, B, B′, T , and Z. The

A, B, and T words again respectively represent the values of 0, 1, and a transitory

word. The additional words E′, and B′ are included to account for the abnormally

sized blank Z.

2. At some point during execution, the machine reaches the following configuration

where c is some state: 0∗[E][T ][cZ][Z]∗.

3. The following transitions hold for some states c, r, and r′:

• [cA] ⇒r [B]

• [cB] ⇒ [T ]c

• [cZ] ⇒ [B′

r′ ]

• [Br′ ] ⇒r [B]

• [Tr] ⇒r [A]
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• [Er] ⇒ [E]c

• [E′

r] ⇒ [E′]c

4. [E][T ]i[B′] = [E′][T ]i+1[B] for all i ≥ 1.

The last requirement allows one to redefine the makeup of the tape in order for the

correct transitions to be applied. After the carry signal c reaches a blank Z, the tape

will be redefined from having an E component to having an E′. Then the next time this

occurs, it will be redefined again to an E. It will “alternate” like this forever and thus

machines following this format are non-halters.

4.4.4 Resetting Counters

Intuitively, resetting counters periodically “reset” themselves back to zero and then

start counting up again. In fact, resetting counters differ from ordinary counters in only

one minor modification to one transition. In plain counters, when the carry signal c reaches

the blank word Z, the Z is transformed into a B word which is representative of the number

1. When resetting counters encounter this scenario, the Z is instead transformed into an

A which is the 0 representative. Thus a resetting counter will count up to 20, reset, 21,

reset, 22, reset, and so on. The formal specification for a resetting counter is trivially

derived from the original counter definition in sect. 4.2.7. We therefore do not include it

here.

4.4.5 Complex Counters

Complex counters follow a modified specification to that outlined in sect. 4.2.7 that

increases the scope of the behavior while still maintaining the guaranteed non-haltingness

of the machines that follow it. First of all, the original description specifies two single

states c and r that must remain consistent throughout the transisitions in order for the

proof to hold. A simple extension can redefine c and r as sets of states instead of one single

state. If this is done, than all transitions which specify c as a state must be split into n

different transitions where n is the size of the set c and each transition uses a different

element of the set c. The same would obviously apply to set r. Similarly, an extension

can be made for each of the words A, B, T , etc. included in the specification.

Clearly, automated detection of such an extension can become a significant burden.

Even relatively small sets used in the specification would give rise to a significantly greater

number of defined transitions. Additionally, larger sets of words would give rise to an even
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greater overall set of words that need to be identified, which is one of the main obstacles

of the automated routines in the first place. Regardless, with a relatively small number

of holdouts to examine, machines of this nature can be identified by manual analysis.

4.4.6 Combination Counters

All of the above counter behaviors have a very clear, provably infinite specification

which a machine must follow in order to be considered in that particular class of non-

halt behavior. However, many of the 98 holdout machines do not fall into one explicit

category of counters. Instead, some of them exhibit characteristics from some, or even all

of the behaviors shown above. The specifications for any of these combination classes of

machines can be derived by meshing the necessary specifications together. Going through

each of the possible combinations here would be largely redundant, so we do not include

them for brevity.

After manually examining the holdouts, 30 of them have been identified as some

variation (or combined variation) of the counter behaviors described above.72 While some

of them have been explicitly proven as their identified behaviors by manually identifying

each of the components that make up the specification, others remain as conclusive coun-

ters based on a close visual examination of their behavior and diagrammatic recognition

of features common to each particular category. The real perceptual bridge of human

diagrammatic reasoning begins to be seen here. While we have not established a sym-

bolic logical proof of the non-haltingness of each of these machines, we are nonetheless

completely convinced of their behaviors.

4.4.7 Nested Christmas Trees

We invite the reader to refer to section 4.2.4 to once again become familiar with

the described Christmas tree specification. We have already seen several variations of

these Christmas trees, including the already analyzed leaning Christmas trees, as well as

multi-sweep Christmas trees. Let us now examine an even more bizarre variation dubbed

nested Christmas trees.

Nested Christmas trees exhibit the same repeatable sweeping motion across the tape

as do regular Christmas trees. However, the one very distinct difference, is that during

72Holdouts numbered 2, 5, 6, 7, 8, 10, 11, 16, 17, 22, 23, 27, 28, 29, 34, 37, 40, 42, 43, 44, 53, 54, 55, 56,
57, 61, 63, 71, 96, 97 have been established as some type of counter variation. See Appendix A for more
information on these machines.
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Figure 4.15: Nested Christmas tree conceptual behavior

each return sweep of the tree, the machine undergoes a miniature, nested set of sweeps

resembling a nested Christmas tree until it reaches the previous extremum point of the

read head. Consider fig. 4.15 for a more intuitive understanding of how nested Christmas

trees work. Imagine that the top of the figure represents some particular point of execution

of the machine. Specifically, the read head is located at the right most extremum point

of the end of some sweep. The end of the arrow thus represents the location of the read

head on the tape (which is not shown for simplicity). Now as one progresses down the

figure, imagine that the tape at successively later points in time are shown, and that the

read head is located at the intersection of the arrows and the invisible tape.

Thus we have a conceptual visual representation of how the machine behaves over

time. As we can see by the figure, when the tape reaches the end of the sweep moving to

the left, it undergoes a nested set of sweeps until it reaches the previous right extremum
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point of the read head. It then sweeps back to the left again, and starts up another nested

tree. The pattern continues forever and thus the machine is a non-halter.

With a generalized understanding of how nested Christmas trees work, let us for-

malize the behavior:

1. For machine M or its mirror M c, there are words U , V , X, Y , Z, Un, V ′, and V ′′.

U and V are end components that cap the left and the right sides of the overall tree.

X, Y , and Z represent the repeating interior components during different points of

the execution of the machine. V ′ and V ′′ are intermediate components that the right

end component is in while the machine is in between sweeps. The Un component is

used as the right end component of the nested sweeps.

2. At some point during execution, the machine reaches the following configuration

where s is some state: 0∗[U ][X][Vs]0
∗.

3. The following transitions hold for some states q, qn, and rn:

• [Vs] ⇒q [V ′]

• [Xq] ⇒q [Y ]

• 0∗[Uq] ⇒ 0∗[Un]rn

• [rnY ] ⇒qn [Z]

• One of the following two holds:

– 0∗[Un
qn ] ⇒ 0∗[Un]rn

– 0∗[Un
qn ] ⇒ 0∗[Un][Z]rn

• [rnZ] ⇒ [Z]rn

• [rnV ′] ⇒ [V ′′

s ] if V ′ 6= Y

• [rn0∗] ⇒ [V ′′

s ]0∗ if V ′ = Y

• [Zqn ] ⇒qn [Z]

4. ∀i(0∗[Un][Z]i[V ′′]0∗ ⇒ ∃j(0∗[U ][X]j [V ]0∗))

This specification is slightly complicated to verbally explain, but it is essentially

adapted from a simplified version of the original Christmas tree specification with the

inclusion of additional transitions to encapsulate the nested Christmas tree behavior of

the return sweep. Again, after a manual analysis of the holdout machines, it was inferred
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that 27 of the remaining machines can be classified as nested Christmas trees.73 Similar

to the case with the counters, not all of these machines have been explicitly confirmed as

being nested Christmas trees. In fact, it is likely that some of the 27 machines do not

actually follow the above specification but require some modification of it in order to be

proven a non-halter. Nevertheless, a visual inspection of the machines mentioned leaves

no doubt that they are at least some variation of a nested Christmas tree.

4.4.8 Uneven multi-sweep Christmas trees

Another 18 of the holdouts in question exhibit a behavior that is extremely similar to

that of multi-sweep Christmas trees.74 In fact, for each of these machines in question, the

specification that can prove its non-haltingness is identical to the particular multi-sweep

class that it is a part of (2 sweeps, 3 sweeps, etc.). Now of course the obvious question

becomes why are they not flagged by the automated detection routine as such.

The details concerning how these machines escape the automated routine are very

specific to the implementation and therefore need not be fully discussed here. However,

refer to fig. 4.16 for a general idea as to why these machines are not automatically detected.

As one can see, on certain sweeps, the read head does not reach the extremum of the

previous sweep. Therefore, complications arise when attempting to automatically extract

the necessary components outlined in the specification.

Attempts to symbolically prove the non-haltingness of these machines by manually

identifying the components and verifying the transitions of the specifications have not

been made. Not only is this process incredibly time consuming like those for the nested

Christmas trees and the counter variations, but the hope is that the necessary changes

can be incorporated into the automated detection routine so that the proofs can be done

automatically. Regardless, once again visual inspection of the machine behaviors allows

us to classify these machines as uneven multi-sweep Christmas trees.

4.5 Solidifying Σ(5) by Visual Inspection

After classifying the holdouts for Σ(5) into the already mentioned categories, 13

machines remain that do not follow any of the aforementioned behaviors. Formal behaviors

for these machines have not yet been defined; however, careful visual analysis of their

73The machines referred to here are the holdouts numbered 18, 24, 25, 30, 31, 33, 35, 36, 38, 39, 45, 46,
47, 48, 62, 64, 65, 70, 75, 80, 81, 82, 85, 86, 89, 90, 91.

74Holdouts 26, 41, 50, 51, 52, 66, 67, 72, 73, 76, 77, 78, 79, 83, 84, 92, 93, 94.
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Figure 4.16: Uneven multi-sweep conceptual behavior

executions have led to the following conclusions:

• 1 of these machines (holdout 69) is most definitely what we call a “startup effects

Christmas tree.” The current Christmas tree detection routine runs the machine for

a specified number of steps before beginning to attempt to identify components and

transitions of the Christmas tree behavior. This accounts for any “startup effects”

that the machine may undergo before exhibiting the infinite repeatable behavior.

This 1 machine in question has an unusually long period where it exhibits startup

behavior and therefore overruns the arbitrarily chosen “startup effects” threshold.

A simple increase of this threshold should pickup this machine.

• 5 machines (holdouts 15, 58, 59, 60, and 87) are somewhat similar to nested Christ-



82

mas trees. However, in these cases, instead of performing a miniature nested Christ-

mas tree behavior on its return sweep, the machines incorporate a nested counter

into their return sweeps. We call these machines nested Counter Christmas trees.

• 1 machine (holdout 4) is the corresponding equivalent of a multi-sweep Christmas

tree for leaning Christmas trees. The behavior is a double sweep leaning Christmas

tree which would be an intuitive extension of leaning Christmas trees.

• 3 machines (holdouts 19, 20, and 21) are very bizarre and can be best described

as 1.5 sweep Christmas trees. On every other sweep, the read head reaches only

halfway to the previous extremum point before returning.

• The final 3 machines (holdouts 49, 68, and 74) are most easily named asymmetric

Christmas trees. They exhibit a similar back and forth sweeping motion of regular

Christmas trees except their interior components are not identical from end to end.

Instead, one component repeats until halfway to the other extremum, and then

another, different component repeats until the end. Thus it is asymmetric.

Our contention once again is that all of these machines are “diagrammatically” con-

firmed as non-halters by our own visual deductive reasoning system.75 However, we realize

that the lack of concrete, formal symbolic proofs about the non-haltingness of these ma-

chines may concern some readers. Let us consider, then, the diagrammatic representation

of the execution of one of these machines.76

Figure 4.17 displays the extended diagrammatic representation of the execution of

the first 300 steps of holdout 21.77 As is indicated, this holdout follows the behavior that

we describe as a 1.5 sweep Christmas tree. Notice from the diagram that each time the

read-write head reaches a right extremum point on the tape, the tape is in a configuration

75It should be noted that Brady (1983) makes a similar assertion when he is faced with his own set of

holdouts in his attack on the quintuple formulation of Σ(4) (the same formulation of the problem that Lin

& Rado (1964) attack):

The general behavior of all of the 218 holdout machines has already been described.
. . . All of the remaining holdouts were examined by means of voluminous printouts of
their histories along with some program extraced features. It was determined to the
author’s satisfaction that none of these machines will ever stop.

Therefore, our claims, while bold, are not unprecedented.
76Note that we include the flow charts as well as the diagrammatic executions of the first 75 steps of all

13 of the machines in question in Appendix B.
77Note that the diagram is split into four separate columns. Each column represents 75 steps of the

execution. Also, the word “State” which has appeared in previous diagrammatic representations has been
shown as simply an “S” in this figure due to space constraints.
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such that half of the relevant tape (the lefthand portion) is a contiguous sequence of 1’s.

The right hand portion, on the other hand, is a sequence of 01 components. The machine

then sweeps leftward, following a jagged pattern through this sequence of 01’s until it

reaches halfway across the relevant portion of the tape and into the contiguous 1 pattern.

At this point, it continues directly in a leftward motion until it establishes a new left

extremum point. During the corresponding rightward sweep, the machine first sweeps

halfway across the tape78 (to the right edge of the contiguous 1’s), and then sweeps back

before executing a full rightward sweep to establish a new right extremum point.

It should be abundantly clear from the diagram and this verbal description of the

machine’s behavior that this pattern will continue indefinitely, pushing the left and right

extrema successively outward while continuing to add components to the relevant center

portion of the tape. The significance of this discussion, however, is the fact that this

knowledge is obtained without any construction or reference to a formal specification of

the behavior or symbolic logical proof. As is discussed in sections 3.3.1 and 3.3.4, we are

simply able to “read” the infinite behavior off of the diagrammatic representation of the

machine’s execution and subsequently deduce by our visual cognitive abilities that the

machine is a non-halter.

As a final result, we thus claim that the values for the quadruple formulations of Σ(1)

through Σ(5) from Table 4.4 are confirmed as truths. Every Turing machine in the search

space of these problems have been classified as either a halter (and the corresponding

productivity relevant to the Busy Beaver formulation recorded) or a non-halter in one of

the defined categories of behaviors that we have described. All of the machines for the

n = 1 through 4 search spaces have been categorized via formalized automatic behavior

detection mechanisms while the final set of 98 holdouts for Σ(5) require an appeal to

human diagrammatic reasoning processes to finish the job.

78This halfway sweep is what constitutes the “.5” portion of the behavior name.
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      0       S 0
      1       S 1
      10      S 2
      10      S 3
     010      S 3
    0010      S 1
    0010      S 0
    0110      S 1
    0110      S 2
    0110      S 1
    01100     S 0
    01101     S 1
    011010    S 2
    011010    S 3
    011010    S 3
    011010    S 1
    011010    S 2
    011010    S 3
    011010    S 3
    011010    S 3
   0011010    S 1
   0011010    S 0
   0111010    S 1
   0111010    S 2
   0111010    S 1
   0111010    S 2
   0111010    S 3
   0111010    S 3
   0111010    S 3
   0111010    S 3
  00111010    S 1
  00111010    S 0
  01111010    S 1
  01111010    S 2
  01111010    S 1
  01111010    S 2
  01111010    S 1
  01111010    S 0
  01111010    S 4
  011110100   S 0
  011110101   S 1
  0111101010  S 2
  0111101010  S 3
  0111101010  S 3
  0111101010  S 1
  0111101010  S 2
  0111101010  S 3
  0111101010  S 3
  0111101010  S 1
  0111101010  S 2
  0111101010  S 3
  0111101010  S 3
  0111101010  S 3
  0111101010  S 3
  0111101010  S 3
 00111101010  S 1
 00111101010  S 0
 01111101010  S 1
 01111101010  S 2
 01111101010  S 1
 01111101010  S 2
 01111101010  S 1
 01111101010  S 2
 01111101010  S 3
 01111101010  S 3
 01111101010  S 3
 01111101010  S 3
 01111101010  S 3
 01111101010  S 3
001111101010  S 1
001111101010  S 0
011111101010  S 1
011111101010  S 2
011111101010  S 1
011111101010  S 2

  011111101010      S 1
  011111101010      S 2
  011111101010      S 1
  011111101010      S 0
  011111101010      S 4
  011111101010      S 0
  011111101010      S 4
  0111111010100     S 0
  0111111010101     S 1
  01111110101010    S 2
  01111110101010    S 3
  01111110101010    S 3
  01111110101010    S 1
  01111110101010    S 2
  01111110101010    S 3
  01111110101010    S 3
  01111110101010    S 1
  01111110101010    S 2
  01111110101010    S 3
  01111110101010    S 3
  01111110101010    S 1
  01111110101010    S 2
  01111110101010    S 3
  01111110101010    S 3
  01111110101010    S 3
  01111110101010    S 3
  01111110101010    S 3
  01111110101010    S 3
  01111110101010    S 3
 001111110101010    S 1
 001111110101010    S 0
 011111110101010    S 1
 011111110101010    S 2
 011111110101010    S 1
 011111110101010    S 2
 011111110101010    S 1
 011111110101010    S 2
 011111110101010    S 1
 011111110101010    S 2
 011111110101010    S 3
 011111110101010    S 3
 011111110101010    S 3
 011111110101010    S 3
 011111110101010    S 3
 011111110101010    S 3
 011111110101010    S 3
 011111110101010    S 3
0011111110101010    S 1
0011111110101010    S 0
0111111110101010    S 1
0111111110101010    S 2
0111111110101010    S 1
0111111110101010    S 2
0111111110101010    S 1
0111111110101010    S 2
0111111110101010    S 1
0111111110101010    S 2
0111111110101010    S 1
0111111110101010    S 0
0111111110101010    S 4
0111111110101010    S 0
0111111110101010    S 4
0111111110101010    S 0
0111111110101010    S 4
01111111101010100   S 0
01111111101010101   S 1
011111111010101010  S 2
011111111010101010  S 3
011111111010101010  S 3
011111111010101010  S 1
011111111010101010  S 2
011111111010101010  S 3
011111111010101010  S 3
011111111010101010  S 1
011111111010101010  S 2

  011111111010101010    S 3
  011111111010101010    S 3
  011111111010101010    S 1
  011111111010101010    S 2
  011111111010101010    S 3
  011111111010101010    S 3
  011111111010101010    S 1
  011111111010101010    S 2
  011111111010101010    S 3
  011111111010101010    S 3
  011111111010101010    S 3
  011111111010101010    S 3
  011111111010101010    S 3
  011111111010101010    S 3
  011111111010101010    S 3
  011111111010101010    S 3
  011111111010101010    S 3
 0011111111010101010    S 1
 0011111111010101010    S 0
 0111111111010101010    S 1
 0111111111010101010    S 2
 0111111111010101010    S 1
 0111111111010101010    S 2
 0111111111010101010    S 1
 0111111111010101010    S 2
 0111111111010101010    S 1
 0111111111010101010    S 2
 0111111111010101010    S 1
 0111111111010101010    S 2
 0111111111010101010    S 3
 0111111111010101010    S 3
 0111111111010101010    S 3
 0111111111010101010    S 3
 0111111111010101010    S 3
 0111111111010101010    S 3
 0111111111010101010    S 3
 0111111111010101010    S 3
 0111111111010101010    S 3
 0111111111010101010    S 3
00111111111010101010    S 1
00111111111010101010    S 0
01111111111010101010    S 1
01111111111010101010    S 2
01111111111010101010    S 1
01111111111010101010    S 2
01111111111010101010    S 1
01111111111010101010    S 2
01111111111010101010    S 1
01111111111010101010    S 2
01111111111010101010    S 1
01111111111010101010    S 2
01111111111010101010    S 1
01111111111010101010    S 0
01111111111010101010    S 4
01111111111010101010    S 0
01111111111010101010    S 4
01111111111010101010    S 0
01111111111010101010    S 4
01111111111010101010    S 0
01111111111010101010    S 4
011111111110101010100   S 0
011111111110101010101   S 1
0111111111101010101010  S 2
0111111111101010101010  S 3
0111111111101010101010  S 3
0111111111101010101010  S 1
0111111111101010101010  S 2
0111111111101010101010  S 3
0111111111101010101010  S 3
0111111111101010101010  S 1
0111111111101010101010  S 2
0111111111101010101010  S 3
0111111111101010101010  S 3
0111111111101010101010  S 1
0111111111101010101010  S 2

  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 1
  0111111111101010101010    S 2
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 1
  0111111111101010101010    S 2
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 3
  0111111111101010101010    S 3
 00111111111101010101010    S 1
 00111111111101010101010    S 0
 01111111111101010101010    S 1
 01111111111101010101010    S 2
 01111111111101010101010    S 1
 01111111111101010101010    S 2
 01111111111101010101010    S 1
 01111111111101010101010    S 2
 01111111111101010101010    S 1
 01111111111101010101010    S 2
 01111111111101010101010    S 1
 01111111111101010101010    S 2
 01111111111101010101010    S 1
 01111111111101010101010    S 2
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
 01111111111101010101010    S 3
001111111111101010101010    S 1
001111111111101010101010    S 0
011111111111101010101010    S 1
011111111111101010101010    S 2
011111111111101010101010    S 1
011111111111101010101010    S 2
011111111111101010101010    S 1
011111111111101010101010    S 2
011111111111101010101010    S 1
011111111111101010101010    S 2
011111111111101010101010    S 1
011111111111101010101010    S 2
011111111111101010101010    S 1
011111111111101010101010    S 2
011111111111101010101010    S 1
011111111111101010101010    S 0
011111111111101010101010    S 4
011111111111101010101010    S 0
011111111111101010101010    S 4
011111111111101010101010    S 0
011111111111101010101010    S 4
011111111111101010101010    S 0
011111111111101010101010    S 4
011111111111101010101010    S 0
011111111111101010101010    S 4
0111111111111010101010100   S 0
0111111111111010101010101   S 1
01111111111110101010101010  S 2
01111111111110101010101010  S 3
01111111111110101010101010  S 3

Figure 4.17: Holdout machine 21: 1.5 Sweep Christmas Tree



CHAPTER 5

Future Work

5.1 Press Onward

An immediate and obvious extension to our research presented in this thesis is the

continued assault on the Busy Beaver function in an attempt to establish new records,

new non-halt behavior specifications, and ultimately solidified values for Σ(6), Σ(7), and

beyond. We have already seen by our presentation in chapter 3 that significant evidence

exists that humans are capable of hypercomputation that has direct relevance to the at-

tack on the Busy Beaver problem.79 Additionally, our assault in chapter 4 anchors this

possibility with a rigorous establishment of Σ(n) up through n = 5. Thus a continued

push upward to nail down Σ(n) for successively higher values of n by incorporating the

mechanisms described in this thesis would undoubtedly further the evidence of hypercom-

putation that we suggest.

Considering this, let us revisit our dream described at the end of section 2.3.3 one

last time. In our dream, we suggest a set of non-halt detection mechanisms

{NH0, NH1, NH2, NH3, . . .}

that encapsulate the behaviors of all non-halting Turing machines. The existence of such

a set, as is already described, would clearly provide a solution to the Halting problem

as well as the Busy Beaver function. We have fleshed out the early beginnings of this

dream set in chapter 4 and our finalized contention is encapsulated as two overlapping

possibilities:

1. Every member of this set is Turing-computable and thus every Turing machine

that does not halt can be proven so in some Turing-computable way. The reason

that the Halting problem as a whole is non-Turing-computable is because this set

is not a recursively enumerable set. Humans, however, can enumerate this set by

hypercomputational means. We have seen from the presentation in section 3.3 as well

as the concrete examples in section 4.5 that human diagrammatic reasoning processes

79Specifically, humans are capable of hypercomputable processes that are directly related to determining
whether Turing machines do not halt. This capability is also directly tied to diagrammatic reasoning
processes employed by the mind.
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hold the key to extracting these non-halt behaviors. Specifically, we have seen by our

analysis of the Σ(5) holdouts that clear non-halt behaviors can be recognized quickly

by visual analysis and then later stamped out in formal, symbolic patterns. It should

be noted that this overall view is one that also appears to be directly supported in

(Bringsjord, Kellett, Shilliday, Taylor, van Heuveln, Baumes & Ross forthcoming):80

We declare with extreme confidence that all 98 of these holdouts [the same 98
Σ(5) holdouts that we reference in our work] will soon be automatically proven
non-halters as well: the case of 5, and then 6, will soon enough be determined by
. . . the ever ascending human mind. Thus the search continues. By incorporating
formal behaviors found from the [Σ(5)] holdouts, we hope to use these behaviors
to significantly reduce the [Σ(6)] holdout set and continue to adapt, combine, and
formulate new behaviors for the remaining holdouts. . . . Considering this, we see
no reason why the above algorithm [essentially the same algorithm presented in
Algorithm 4] cannot be sustained, and applied to [Σ(7)], [Σ(8)], and beyond.

Thus this “hyperenumeration” process is one that is possible via the computational

powers of the human mind.

2. The other possibility that is supported by our work is that not every member in

our dream set is a Turing-computable procedure. Therefore, there must exist some

non-halting Turing machine that cannot be proven as such by some Turing com-

putable mechanism. If this is the case, then again, we have suggested that human

diagrammatic reasoning processes are capable of surpassing the Turing limit for this

purpose.

Thus while our research still leaves open this question, we have established human vi-

sual reasoning capabilities as being within the hypercomputable spectrum, and therefore

maintain the dream that the Busy Beaver function is computable by tapping into this

power.

5.2 Barwise-ian Reasoning System

As an additional tangent line of research, our work has provided a springboard

for development of diagrammatic reasoning systems that are not anchored in symbolic

mechanisms and cannot be reduced to a Turing equivalent form. As we have already

mentioned in section 3.3.4, Barwise & Etchemendy’s (1995) Hyperproof system parallels

this concept by incorporating into a proof system separate diagrammatic and symbolic

80Note that this cited paper pulls directly from the same Busy Beaver research associated with this
thesis.
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representation schemes that are not completely reducible to each other. While their work

makes no reference to hypercomputational powers of the human mind, it still serves as

a foundation for the development of reasoning systems that more closely resemble true

human cognitive processes.

Tall (1995) also addresses this concept in a commentary on visual proof systems and

proof systems in general:

Difficulties occur when the enactive or visual form of the proof does not suggest an
obvious sequence of deductions to use for a formal proof, so that the individual seems
to ”know” that the theorem is true and yet has no method of proving it. There are
numerous examples in topology where an ”obvious” visual property fails to have a
correspondingly simple proof (such as the Jordan curve theorem that every closed
path in the plane that does not cross itself divides the plane into two regions, the
inside and the outside). . . . Educators and mathematicians need to rethink the nature
of mathematical proof and give appropriate consideration to the different types of
proof related to the cognitive development of the individual.

Here we can see that Tall references a very similar situation to our discussion in sec-

tion 3.3.1 as well as our analysis of the final Σ(5) holdouts in section 4.5. Thus our work

provides stepping stones for additional research in the formalization of visual cognitive

processes.

5.3 Hypercomputational Processes in Nature

We have suggested at numerous points throughout this thesis that human hyper-

computational abilities are the direct result of natural, physical hypercomputational pro-

cesses of which the human brain is comprised. Additionally, we cite specific examples

of naturally occurring hypercomputational processes that exist outside of the mind (see

section 3.1.3). Thus an additional obvious line of research that could be inspired by this

work is the quest for artificial hypercomputing machines that are realizable within the

realms of natural physics.

As we have already noted, Penrose (1989, 1994) explores the physical makeup of

the brain via quantum mechanics as possessing non-Turing-computable processes. Addi-

tionally, Hava Siegelmann’s (1995, 1994) work on analog computation has suggested that

analog neural networks, which possess powers beyond the Turing limit, hold the key to

the limits of physically realizable computation. Also, Kieu (2003) has proposed a solution

to the halting problem which is grounded in theoretical quantum computing.

Thus despite Turing’s brilliant work, we can see that the key to the true limits of

computation may not lie exclusively in Turing machines, but instead require a deeper
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understanding of quantum mechanics and the totality of the laws that govern the physical

universe.

5.4 The Human-Computable Gap

As a final, and perhaps most crucially relevant line of research that our work induces

we must first revisit a diagram that we present way back in figure 1.1. Recall that this

illustration as a whole represents the set of all Turing machines. The Turing-computable

and Human-computable lines respectively denote the capability of Turing-computation

and Human-computation in determining whether Turing machines do not halt. Thus our

work presented in this thesis has anchored the Human-computable line as clearly above the

Turing-computable line and therefore humans are more capable of determining whether

Turing machines do not halt than any Turing equivalent machine.

The question still remains, however, regarding the precise location of this line.

Specifically, we leave open the problem of determining whether this line lies above the

set of all Turing machines and thus humans possess the power to solve the generalized

form of the Halting problem (and consequently Σ(n)). Let us briefly consider the possi-

bility where this is not the case and the Human-computable line is positioned such that

humans cannot solve Σ(n): We have seen by our work presented thus far, that Σ(1)

through Σ(5) have been established with absolute certainty. Also, there are no foresee-

able barriers to the confirmation of Σ(6), Σ(7), and beyond. However, if humans cannot

solve Σ(n), then there must exist some smallest k for which Σ(k) cannot be confirmed by

mechanisms of human reasoning. Thus consider the set of all k-state Turing machines. If

humans cannot confirm Σ(k), then there must exist at least one of these machines that

cannot be confirmed as a non-halter by humans.

What might the behavior of such a machine look like? Such a “chaotic” machine

might provide crucial insights about the cusp of the Turing barrier. However, what we

suggest is more likely is that humans can in fact solve Σ(n) and our research is the

beginning of that solution. This exact notion is presented in (Bringsjord et al. forthcoming)

by appealing to a Gödelian type line of reasoning:

The idea is really quite simple: If humans are smart enough to determine [Σ(n)], they
will eventually (perhaps after 100 years, perhaps after 1000, perhaps after 1, 000, 000, 000,
. . .) be smart enough to determine [Σ(n+1)]: they will invent some new technique for
economically representing the behavior of n + 1 machines, and for detecting in that
representation when activity will cease, and when it will not: there will remain no
holdouts.
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Thus our dream continues to gain momentum. While we have not provided a conclusive

argument that Σ(n) is human-computable, we have cemented the human-computable line

above the Turing-limit and set the human driven assault on Σ(n) into high gear.



CHAPTER 6

Conclusion

Turing’s (1936) original work established the generally accepted basis of all computation.

Not only have his Turing machines formed the theoretical foundation of digital computers,

but their computational and expressive power have also been widely acknowledged as the

decisive measuring stick for the limits of computability. In fact, many have argued (e.g.

Dennett 1991, Kurzweil 2000, Hofstadter & Dennett 1981) that all processes in the physical

world can be simulated computationally by Turing machines and thus a human mind can

be simulated with a properly programmed Turing machine that mimics the behavior of

its physical parts.

It has been our contention in this thesis that this suggestion is bogus. While Turing

machines hold their place in conventional computability theory, the laws of the physical

world are beyond the computational expressive power of Turing machines. Therefore,

humans, a part of this physical universe, can harness this power to perform computations

beyond the Turing limit. Leveraging this concept in the context of a proven, non-Turing-

computable problem (the Busy Beaver function), our accomplishments in this thesis have

been four-fold:

1. Despite a harsh refutation by Bringsjord & Zenzen (2003), we have propped up a

Gödelian argument presented by Penrose (1994) that anchors the powers of human

reasoning as being above the Turing limit. More specifically, we have formalized

his proof by contradiction that there cannot exist a Turing machine that possesses

the same capabilities of the human mind to ascertain that Turing machines do not

halt. Thus not only do we solidify the hypercomputational power of humans, but via

Penrose’s line of reasoning, we are able to directly associate this power to determining

the non-haltingness of Turing machines.

2. Appealing to Searle-ian (1980) as well as Penrose-ian (1989, 1994) lines of reasoning,

we are able to further isolate human hypercomputational powers as a direct product

of visual and diagrammatic reasoning.

3. Building off of Ross’s (2003) original assault on the Busy Beaver function, we have

enhanced his search-based optimization strategy with specific non-halt detection

behaviors. The result is that we have confirmed the values of Σ(1) through Σ(5).
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Perhaps more importantly, however, is that the final machines in the Σ(5) search

space are categorized as non-halters not by our automated detection routines, but

instead by the visual reasoning processes of the human mind mentioned above. Thus

our attack on the Busy Beaver function has pushed the limits of the human mind

and tapped into its awesome hypercomputational power.

4. Finally, our research has raised important considerations for the fields of visual

reasoning, quantum mechanics, and of course the continued upward quest to confirm

values of Σ(n).

While the Busy Beaver problem is unassailable by mechanisms of Turing computa-

tion, we have established new hope that the dream of a human computable solution is a

realizable possibility.
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APPENDIX A

Initial Categorized Σ(5) Holdouts

In this appendix, we present the 5-state Turing machines that can be classified in one of

the non-halt behavior patterns described in section 4.4. While only a small subset of these

machines have been symbolically confirmed as belonging to their respective suggested be-

havior categories (such machines are marked with a star),81 the remainder of the machines

we contend have been “diagrammatically” confirmed by human reasoning processes that

cannot be symbolically described.

A.1 Leaning Christmas Trees

The leaning Christmas tree Turing machines are depicted in figures A.1 through A.10.
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Figure A.1: Holdout machine 0 (*)
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Figure A.2: Holdout machine 1 (*)
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Figure A.3: Holdout machine 3 (*)
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Figure A.4: Holdout machine 9 (*)

81We ask the reader to contact the author for a complete description of the extracted components that
constitute symbolic confirmation of the said machines.
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Figure A.5: Holdout machine 12 (*)
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Figure A.7: Holdout machine 14 (*)
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Figure A.9: Holdout machine 88 (*)
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A.2 Nested Christmas Trees

The nested Christmas tree Turing machines are depicted in figures A.11 through A.37.
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Figure A.11: Holdout machine 18
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Figure A.12: Holdout machine 24
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Figure A.13: Holdout machine 25
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Figure A.14: Holdout machine 30
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Figure A.15: Holdout machine 31
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Figure A.17: Holdout machine 35
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Figure A.18: Holdout machine 36
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Figure A.19: Holdout machine 38
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Figure A.20: Holdout machine 39
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Figure A.21: Holdout machine 45
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Figure A.22: Holdout machine 46
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Figure A.25: Holdout machine 62
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Figure A.26: Holdout machine 64
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Figure A.27: Holdout machine 65
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Figure A.28: Holdout machine 70
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Figure A.29: Holdout machine 75
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Figure A.30: Holdout machine 80
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Figure A.31: Holdout machine 81
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Figure A.33: Holdout machine 85
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Figure A.34: Holdout machine 86
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Figure A.35: Holdout machine 89
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Figure A.36: Holdout machine 90
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A.3 Uneven Multi-sweep Christmas Trees

The uneven multi-sweep Christmas tree Turing machines are depicted in figures A.38

through A.55.
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Figure A.38: Holdout machine 26
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Figure A.39: Holdout machine 41
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Figure A.42: Holdout machine 52
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Figure A.43: Holdout machine 66
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Figure A.44: Holdout machine 67
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Figure A.45: Holdout machine 72
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Figure A.46: Holdout machine 73
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Figure A.47: Holdout machine 76
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Figure A.48: Holdout machine 77
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Figure A.49: Holdout machine 78
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Figure A.50: Holdout machine 79
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Figure A.51: Holdout machine 83
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Figure A.52: Holdout machine 84
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Figure A.53: Holdout machine 92
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Figure A.54: Holdout machine 93

start 0

halt

1
0:1

2

1:L

0:L

1:R

1:L 3
0:L

4

0:L

1:L

0:R

Figure A.55: Holdout machine 94



105

A.4 Standard Counters

The Turing machines in figures A.56 to A.58 exhibit standard counter behavior

as specified in section 4.2.7 that escape the specific implementation of the automated

detection routine.
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Figure A.56: Holdout machine 5 (*)
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Figure A.57: Holdout machine 96 (*)
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Figure A.58: Holdout machine 97 (*)

A.5 Base 3 Counters

The Turing machine in figure A.59 is the only holdout that has been symbolically

confirmed to be a non-combination base 3 counter. However, some of the combination

counters specified in section A.9 exhibit modifications of base 3 counter behavior. Also,

the counters in section A.10 have not been explicitly classified into individual counter

categories but it is likely that some of them are also non-combination base 3 counters as

well.
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Figure A.59: Holdout machine 2 (*)
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A.6 Base 4 Counters

While not confirmed, it has been diagrammatically deduced that the machine in

figure A.60 is a base 4 counter.
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Figure A.60: Holdout machine 10

A.7 Alternating Counters

The machine in figure A.61 is a confirmed alternating counter.
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Figure A.61: Holdout machine 7 (*)

A.8 Resetting Counters

The machines in figures A.62 and A.63 are resetting counters.
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Figure A.62: Holdout machine 27
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Figure A.63: Holdout machine 28

A.9 Combination Counters

The machine in figure A.64 is a confirmed combination, base 3, alternating, resetting,

complex counter. Figure A.65 is a confirmed combination, alternating, resetting, complex

counter. Figure A.66 is an unconfirmed base 3, alternating counter.
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Figure A.64: Holdout machine 6 (*)
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Figure A.65: Holdout machine 16 (*)
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A.10 Uncategorized Counters

The machines shown in figures A.68 to A.85 have all been visually analyzed and

determined to be some variation of a counter.
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Figure A.67: Holdout machine 8
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Figure A.68: Holdout machine 11
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Figure A.69: Holdout machine 22
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Figure A.70: Holdout machine 23
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Figure A.71: Holdout machine 29
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Figure A.72: Holdout machine 34
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Figure A.73: Holdout machine 37
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Figure A.74: Holdout machine 40
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Figure A.75: Holdout machine 42
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Figure A.76: Holdout machine 43
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Figure A.77: Holdout machine 44
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Figure A.78: Holdout machine 53
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Figure A.79: Holdout machine 54
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Figure A.80: Holdout machine 55
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Figure A.81: Holdout machine 56
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Figure A.82: Holdout machine 57
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Figure A.83: Holdout machine 61
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Figure A.84: Holdout machine 63
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APPENDIX B

Final Σ(5) Holdouts

The machines illustrated in this appendix have been classified into their respective non-

halt categories via mechanisms of human diagrammatic reasoning. Both the flow charts

and diagrammatic representations of the first 75 steps of their executions are included. For

additional information on these machines as well as extended diagrams of their executions,

contact the author of this thesis.
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Figure B.1: Holdout machine 4: Multi-sweep leaning Christmas Tree
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Figure B.2: Holdout machine 15: Christmas Tree Counter
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Figure B.3: Holdout machine 19: 1.5 Sweep Christmas Tree
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Figure B.4: Holdout machine 20: 1.5 Sweep Christmas Tree
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Figure B.5: Holdout machine 21: 1.5 Sweep Christmas Tree
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Figure B.6: Holdout machine 49: Asymmetric Christmas Tree
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Figure B.7: Holdout machine 58: Christmas Tree Counter
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Figure B.8: Holdout machine 59: Christmas Tree Counter
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Figure B.9: Holdout machine 60: Christmas Tree Counter
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Figure B.10: Holdout machine 68: Asymmetric Christmas Tree
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Figure B.11: Holdout machine 69: Startup effects Christmas Tree
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   100100101010  State 3
   100100101010  State 1
   100100101010  State 1
   100100101010  State 2
   100100101010  State 3
   100100101010  State 1
   100100101010  State 2
   100100101010  State 3
   100100101010  State 1
   100100101010  State 2
  0100100101010  State 3
 00100100101010  State 1
000100100101010  State 2

Figure B.12: Holdout machine 74: Asymmetric Christmas Tree
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  11111   State 3
  11111   State 0
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 011111   State 1
 011111   State 1
 011111   State 1
 011111   State 1
 011111   State 1
 0111110  State 1
 0111111  State 2
 0111111  State 3
 0111111  State 0
 0111011  State 2
 0111011  State 3
 0111011  State 0
 0101011  State 2
 0101011  State 3
 0101011  State 0
 1101011  State 1
 1101011  State 1
 1101011  State 1
 1111011  State 2
 1111011  State 3
 1111011  State 0
 0111011  State 2
00111011  State 3
00111011  State 4
00111011  State 3
00111011  State 0
01111011  State 1
01111011  State 1
01111011  State 1
01111011  State 1
01111011  State 1
01111111  State 2
01111111  State 3
01111111  State 0
01101111  State 2
01101111  State 3
01101111  State 0
00101111  State 2
00101111  State 3
00101111  State 4
00101111  State 3
00101111  State 0
01101111  State 1
01101111  State 1
01101111  State 1
01111111  State 2
01111111  State 3
01111111  State 0

Figure B.13: Holdout machine 87: Christmas Tree Counter
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