
Computer Studies of Turing Nlachine Problems

SHE~" L>*
Bell 7'elephone Laboratories, Inc., Murray Hill, New Jersey

AN])

T[BOR RADO

The Ohio Stage University and Battelle Memorial [nstitute, Columbus, Ohio

Abstract. This paper solves a problem rela t ing to Tur ing machines arising in connection
with the Busy Beaver logical game [21. Specifically, with the help of a computer program,
the values of two very well-defined positive integers ~(3) and SH(3) are determined to b~
6 and 21 respectively. The functions Y2(n) and SH(n), however, are noncomputable fune.
tions.

I. Introduction

lit, is assumed tha t the reader is familiar with the discussion of Tur ing rnaehit~es
in Kleene [1]. We operate here with binary Tur ing machines with the alphabet
O, 1. In the way of illustration, consider the following Tar ing machine.

CARl) 1 C A R l) 2 CARl) 3

0 1 1 2 0 1 0 1 0 1 1 0 2
1 1 1 3 1 1 1 2 1 1 1 1 0

r a , (Actually, a I u r m g machine is not a machine, but rather a program (set of in-
structions) spelled out in a fixed format , as illustrated above. The instrueti0:ns
are specified on a finite number of "ca rds ; " thus the above illustration shows a
3-card Tur ing machine. The term "em'd" seems to be preferable lo the term
"s ta te" or "internal configuration," since the idea of a Tur ing machine is n0t
dependent upon physical computers. Let us also note tha t for reasons of con-
venience we deviate from Kleene [11 b y not permit t ing a "center shift ." On each
card, the leftmost e, olumn contains the a lphabet 0, 1. The next column to the
right, contains tile "overprint by" ins~xuetion. The next column to the right c0n-
gains the "shift" instruction, where 0 is the code for left shift, 1 is the code for
right shift. The r ightmost eolmnn shows the "call" instruction; it: shows tile its.
dex of the card to which control is transferred.

In the "call" positions, we may have any one of the card indices (now 1, 2, 3)
or we m a y have 0, which is tile code for " s top" (see the l-line of card 3).

The Tm'ing machine operates on a potent ial ly both-ways infinite tape, divided
into squares, each of which contains a 0 or 1. At any moment , one of these squares
is scanned, and one of the cards is "in control" in tile sense tha t the instructions
on tha t card are to be executed.

The example below shows a si tuat ion where card 3 is in control and a 0 is
scanned. (The • . . a t either end means that all squares not shown contain O's.)

This research was sponsored in pa r t by the US Army Research Office (Durham) under
grant DA-ARO(D)-31-124-G312 with The Ohio S ~ ' ' t a le [Jmvers t ty Research Foundation.

• The results of this paper appeared in part in this author's doctoral dissertation, The
Ohio State University, 1963, under the guidance of Professor T. Rado.

196

Journal of the Association for Computing Machinery, Vol. 12, No. 2 (Aoril, 1965), ~op. 196-212

COI~iPUTER STUDIES OF TURING MACIIINE PROBLEMS 197

"-'_101 11i01 101.-.
3

Now let us start on an all-0 tape with its card 1, the Turing machine described
above. We find that we receive the stop instruction after four shifts; the final
tape situation is

- . - i 0 1 1 1 1 1 0 1 . . .

0

Next., consider another 3-card Turing machine given below.

CARl) 1 CARl) 2] CAI/D 3

0 1 1 2 0 1 0 1 [0 1 0 2
/

[1 1 0 3 1 1 1 2] 1 1 1 0

Starting this machine on an all-0 tape with its card 1, we find that the stop in-
struction is received after 13 shifts. The final tape situation is

" " " [0 1 1 1 1 1 1 1 1 I I 1 1 1 0 1 . • .

0

As a last illustration, consider the 3-card Turing machine shown below.

C A R D 1 CARl) 2 CARD 3 f

0 1 1 2 0 1 0 3 0 1 0 1
1 1 1 0 1 1 1 2 1 1 0 3

Starting this machine on an all-0 tape with its card 1, we find after a while that
the machine fails to reach the situation required for stopping (see the l-line of
(~ard 1). Now the question is: Will this machine ever stop? To get, better insight,
it is convenient to use the following diagram for the "operating record" of the
Turing machine.

01
1 02
la 1

0~1 1
Oxl 1 1
1 1 2 1 1
1 1 1~ 1
1 1 1 1..,
1 1 1 1 O~
1 1 1 13 1
1 1 13 1 1
1 13 1 1 1
13 1 1 1 t

Oa 1 1 1 1 1
01 1 1 1 1 1 1
1 le I 1 1 I 1
1 1 12 l 1 1 1
1 1 1 I~ 1 1 1
1 1 1 1 1~1 1
1 1 1 1 1 1 2 1
1 1 1 1 1 1 ls

This diagram is obtained by showing the successive tape situations individually;
it is very suggestive in formulating conjectures about the behavior of a machine.
Each row of the diagram shows the tape only to the point (right and left) beyond
which the tape contains 0's only. The subscripts in the various squares show the

198 S H E N L I N A N D T I B O R :RADO

index of the card in control. The previous diagram shows the operating record
through the first 20 shifts.

Looking at the operating record, we note that the tape situations which are
framed there show a certain similarity; and so we surmise that the machine is in
a "loop" and hence will never stop. We return to this point later on in the Paper.
For the moment, we merely observe that it may be difficult (or even impossible)
to determine by inspection whether or not a given machine will ever stop.

As shown in the preceding discussion, the Turing machine

CARD 1
0 1 1 2
1 1 1 3

CARD 2
0 1 0 1
1 1 1 2

CARD 3
0 1 0 2
1 1 1 0

(started on an all-0 tape with its card 1) prints two l 's on the tape by the time
it stops. On the other hand, the Turing machine

CARD 1
0 1 1 2
1 1 0 3

CARD 2
0 1 0 1
i 1 1 2

C AI~D 3]

t 0 102
1 1 1 0

prints out six l 's by the time it stops.
The following problem arises: Consider, for a fixed positive integer n, the

class Ks of all the n-card binary Turing machines (with the card format de-
scribed above). Let M be a Turing machine in this class K s . Start M, with its
card 1, on an all& tape. If M stops after a while, then M is termed a valid entry
in the BB-n contest (the n-card classification of the Busy Beaver logical game),
and its score ~(M) is the number of l 's remaining on the tape at the time it stops.
Since Ks is a finite class (the number of n-card binary Turing machines is easily
seen to be [4(n + 1)]~), tile number of valid entries in the BB-n contest is als0
finite. Hence, the scores of these valid entries constitute a nonempty finite set of
non-negative integers, and thus this set has a (unique) largest element which we
denote by ~ (n), to stress that this largest element depends upon the card-
number n. I t is practically trivial that this function ~ (n) is not general re-
cursive (see T. Rado [2, 3]). On the other hand, it may be possible to determine
the value of _~ (n) for particular values of n. Trivially, ~ (1) = 1. As an
exercise in a seminar, it has been shown that ~ (2) = 4. The determination d
the actual value of ~ (3) presented, however, quite unexpected difficulties,
even though it was soon conjectured that ~ (3) = 6. The problem mentioned
above is to decide whether or not this conjecture is valid.

The solution of this quite special problem was attempted by several coinpetent
mathematicians and programmers, by means of increasingly elaborate computer
programs. The first definite solution is contained in the present work. After some
experimenting, one will readily observe that the crux of the matter is, for any'
card number n, the determination of the function SH(n) defined as follows.
Each valid entry M in the BB-n contest performs a certain number s(M) of
shifts by the time it stops; the function SH(n) is the maximum of s(M) for all
valid entries in the BB-n contest. As shown in [2], the function SH(n) is not
general recursive either. However, if for some particular value of n the value of
SH(n) can be determined, then for the same value of n the value of ~ (n) can

C O M P U T E R S T U D I E S OF T U R I N G M A C H I N E P R O B L E M S 199

also be effectively determined. Indeed, we merely run each n-card machine
(starting with card 1 on an all-0 tape) through not more than SH(n) shifts;
we note the scores of those that stop, and the largest one of these scores is then

(u). 0II the basis of extensive computer experiments, it has been conjectured
that SH(3) - 21; and a 3-card Turing machine that shifted 21 times by the
ti~e it stopped has been found. In the present work, we verify that this con-
jecture is also valid.

Our interest in these very special problems was motivated by the fact that at
present there is no formal concept available for the "effective calculability" of
individual well-defined integers like ~ (4), ~ (5), . . - . (We are indebted to
Professor Kleene of the University of Wisconsin for this information.) We felt
therefore that the actual evaluation of ~'~ (3), SH(3) may yield some clues re-
garding the formulation of a fruitful concept for the effective calculability (and
n0nealculabillty) of individual well-defined integers.

II. The Method

The total number of 3-cardTuringmachines can easily be seen to be [4(3 + 1)]~
o~' about 17 million. We reduce this number by proper normalization (see
below for details) to 82,944 which is then divided into four lots. For each
lot, our computer program first generates the machines and stores their con-
vcniently coded descriptions in a table which we call the machine table. Then the
program finds and discards those machines that stop in not more than 21 shifts

• and at the same time takes note of their scores and shift mnnbers (when they
}ii

stop). The list of the machines that were not discarded is then scrambled up in
tt~e machine table and the first 50 are printed out. (The purpose is to enable us
t0 observe the behavior patterns of the undecided machines.) Their operating
records are then made up and each is examined for some pattern of behavior
i~dicating that the particular machine considered will never stop. From these,
we observed a certain recurrence pattern (called below the partial recurrence)
which we programmed. As a mat ter of luck, it turned out that this simple re-
currence pattern disposed of all but 40 of the machines. When the operating
records of the 40 "holdouts" were examined, it turned out that they all showed
patterns (discussed below) which enabled us to decide that all the 40 holdouts
were never-stoppers. We may stress here a certain point of interest. Even though
0~lly 40 holdouts were left, it was not clear a priori that it can be decided as to
whether they are never-stoppers or not, for a given machine may exhibit such a
bizarre operating record or exhibit patterns that occur only after a prohibitive
~lun~ber of shifts tha t no human being could be expected to decide that it will
~ever stop. I t is also entirelyo conceivable that we may have on our hands a
Inachine which is undecidable for some logical reason. Luckily this did not
t~appen in this particular case. In this manner it was established that those
~iachines that stopped at all stopped in no more than 21 shifts. Since the pro-
~ram showed us a stopper in 21 shifts, we conclude that SH(3) = 21 and the
BB-3 problem was solved.

ii We now proceed to some details of our work.

The four lots. The number of binary 3-card Turing machines is (see above)
(4"4) ~ -~ 2 ~ = 16,777,216. However, in searching for the actual values of ~ (3)

~ 0 0 SHEN LIN AND :t}[B()H I~AI)O

and SH(3) , it is sufficient to consider a subs(~(~ o:[these m~ehines, obtained ~5.
the following considerations. First, let us obsorvc that ~ll tim 3-card machines
are of the form

CARD 1
0 P~o 8:o C:o

1 ~)11 811Cll

CAIID 2

1 , ~7! ,~'~ ~.,~

w h e r e p ~ = 0 o r 1, s~5= 0 o r 1, c ~ = 0 o r 1 o r 2 o r 3 . N o w consider one 0!,
these machines; denote it by M0. Suppose :lIo is ~ w~lid BIL3 entry, with a
score z(Mo) and shift number s(Mo). Let Mo* be tile "mi r ro r image" of ;t0;
that is, the machine obtained by replacing (in the m rd s for 21Io) each right
shift by a left shift and each left shift by a right shift. Ev iden t ly , Mo* is again:
a valid BB-3 entlT, and (r(Mo*) = c~(Mo), s(Mo*) = S(Mo). Accordingly, we
can restrict ourselves to consider those 3-card machines for which

S~o = 1. (2)

Next, we note that if Mo is a wflid entry such that

pl0 = p~o = p~o = 0, (3)

then clearly c~(M0) = 0 and s(Mo) -< 3. Since we know th a t ~ (3) > 6 and
SH(3) >_ 21, such a machine can be disregarded in searching for the actual
value of ~ (3) and SH(3) . Accordingly, it is sutficient to consider 3-card ma.
chines for which at least one of p:0, p,~0, p.30 is equal to one. I t is also clear that
such a machine Mo is a valid BB-3 entry, then before Mo stops, a card Cs with
p~'0 = 1 must have been used if the situation z(Mo) = O, s(Mo) =< 3 is to he
avoided. Now let C~ be the card of M0 which is in control when Mo first over-
prints a 1; then p~0 = 1. Let M0' be the machine obtained f rom Mo by renumber-
ing the cards of Mo (and adjusting the call instructions c~j) so tha t the original
card C~ is renamed C1. Clearly z(Mo') = ~(M0), and s (M ,) _< s(Mo') +2.
After this modification, we can assume tha~

p:0 = 1. (4)

Next, if we have now C:o = 0, then clearly z(Mo) - 1, s(Mo) = 1; hence any
machine with c:0 = 0 tan be disregarded. Since then c:o ¢ 0, b y renumbering the
cards 2 and 3 of M0 (and adjusting the call numbers c~3), we can assume that

c~o = 2. (5)

Finally, if now c2o = 0, then clearly c,(Mo) _< 2, s(Jl.lo) = 2. Hence , the machines
with c2o = 0 can be disregarded. [n view of (2), (4), (5) we can therefore assume
that

p :o= 1, s :o= 1, c~0= 2, c ,2o~0, (6)

without changing the actual value of ~ (3) . As regards SH(3) , it is clear from
the preceding comments that on denoting by SH*(3) the m a x i m u m of s(M) for
valid BB-3 entries normalized in the manner shown in (6) , then SH(3) <-
SH*(3) + 2.

Next, let Mo be a valid BB-3 entry. Even though there m a y be several "stop-
lines" in the cards for Mo, clearly only one of the several s top instructions will

COMPUTER STUDIES OF TURING MACH[NE PROBLEMS 2011

acttlally be used. Accordingly, we caa assume that exactly one of cH, ce,, ca0,
c:;~ is equal to zero. Fm'thermore, the shift instruction in the unique stop-line of
310 does not affeei: either ,r(M0) or s(Mo) ; hence we can assume that the stop-
li~e orders a right shift. Finally, if we specify that the stop-line shouM issue the
-overpri~t by 1" instruction, then clearly we do not diminish (r(M,). Hence,
we can assume thai; the stop-line has the form 1 10. Now the unique stop-line
may occur in just four locations; namely, as the l-line of card 1, or as tile l-line
of card 2, or the 0-line or l-line of card 3. I t follows that tile machines that we
have to investigate can be classified into four lots as shown below.

L(~t 1

Lol 2

L d 3

Lot 4

CARD 1 I

0 1 1 1 2
1 [1 1 0 '

. t

CARD 1 I !
0 [1 t 2 i

I _1 l y 2 , s,, # 0 l

1 i P'* sll #Oj

CARD 1
0 1 1 2
1 p~l sj~ ~ 0

I I CAI:{D 2

! 0 pc0 s,.,0 ~ 0

{ L,~_>, *::!_27

I 0 p~o seo >0
i 1 1 1 0

CARl) 2

0 p~0 s~0 ~ 0

[CARl) 2

0 pzo s~o ~ 0
1 , pet s,2~ ~ 0

I . ' CARl) 3 [

(- , 3 T : ; 7 - ; 7 7 i ; "

. , j .

C, AI,) :; I
.]

0 pa0 s:;o ~ 0

........ -i)XiiiT; a
- U i T - T - g - ~

0 pa0 sao ¢ 0]
_ L_[_..!_. _Z__(L_.I

A simple computation shows that the mtmber of machines in each one of these
lots is equal to 20,736. Thus (as fat' as ~ (3) is concerned) it is sufiieient to
itwcstigate the 4.20,736 = 82,944 machines contained in the fore" lots. As re-
gards SII(3), a little more work is involved; we return to this point later.

We proceed Io outline the procedures we followed in treating these four lots.

Description of the computer program. Each individual Turing machine is
identified for the purpose of the program as follows. Each line of the Turing
card is coded into a four-bit binary word (with the "call" instruction occupying
two bits). They are then packed in sequence from the 0-line of card l, l-line of
card 1, to the I-line of card 3 into a single machine word. TMs enables us to
identify each machine in terms of a single word. For example, the machine

~ 1 , 1 1 3] I l { [1 0 j ~ 1] -00--2-]
V077

is coded as

I l l lOl111111o11111oo111ol [oolo~J
For convenience we also use the octal representation of this binary number in
referring to the Turing machine. Thus we identify the above machine also by
its "serial number," 73736322. Since the number of maehirms in each lot is still
too large to code by hand, we generate these machines in our computer program
by a generalized counting process and store them in a machine table. For each

202 SHEN LIN AND TIBOR RADO

01
11 03
1 0 0 3
1 031
13 1 1

01 1 1 1
1 12 1 1
1 1 13 1
1 1 1 12
1 1 1 1 02
1 1 1 1 0 03
1 1 1 1 O a l
i 1 I 12 1 1
1 1 h 1 1 I
1 1 1 12 1 1

14 shifts

CI C2 C3]
|

0 1 1 2 0 1 3 10 3]
]

1 1 1 0 1 1 2 1 0 1 |
J

Oi
1 02
11 1

03 1 1
02 1 1 1

O: 1 I 1 1
1 12 1 1 1
1 1 12 1 1
1 1 1 13 1
1 1 1 1 12
1 1 1 1 1 02
1 1 1 1 111
1 1 1 12 1 1
1 1 1 1 Io 1

13 shifts

C: C2 C3
-6- i-;7~- -7-67- -7~- I

1 1 0 3 1 1 2 1 1 0]

01
1 03
h 1

02 0 1
O~ 1 0 1
1 110 1
1 1 03 1
1 1 1 h
1 1 1 I 03
1 1 1 1 1 O1
1 1 1 1 1 1 02
1 1 1 1 1 13 1
1 1 1 1 120 1
1 1 1 1 1 Oo 1

13 shifts

Ct C~ C~

[1] 1 1 3 [1 1 0] 00290~

01
1 02 03
13 1 1 03

02 1 1 1 1 03
03 1 1 1 1 11 1
1 h 1 1 12 1 1
1 1 t l l 0 2 0 1 1
1 1 1 11 1 03 1 1
1 1 1 1 01 h 1 1 1
1 I 1 1 1 0s 03 1 1 1 1
I 1 1 1 13 1 01 1 1 1 1 1
1 1 1 12 1 1 1 13 1 1 1 1
1 1 1 1 lo 1 1 1 lo 1 1 1

12 shifts 11 shifts

-6- ci-~-2 c, [c3 ci c~ c~
103 113 i01

I I I I I f 0 102] I I 0 002

F I O . 1. S c o r e c h a m p s a n d t h e i r o p e r a t i n g r e c o r d s

01
1 O,
h 1

13
O~ 1
1 1~
1 0 0 3
1 031
131 1

0 1 1 1 1
1 h 1 1
1 0 1.~1
1 011 1
1 1 h 1
1 1 0 1 3
1 1 011
1 1 1 12
1 1 1 0 0 3
1 1 1 0 3 1
1 1 131 1
1 h 1 1 1
1 1 131 1

[_~_ CI C~ C3]
l ~ 1 0 2 1 0 3

| 1 1 1 1 0 1 0 1 3 101

21 shifter

01
I Os
13

Ot i
1 12
1 00a
i 0, I
13 1 I

Ol I 1 1
I 12 1 I
I 0 hl
i Oil I
I 1 Is I
1 I 0 h
I 1 01 1
1 I i 12
1 I 1 0 0~
1 I 1 0 3 1
1 1 18 1 1
1 h 1 1 1
1 1 l o l 1

C3 C~ C8
-~--yyT o--GT ~ i

1 1 1 0 0 1 3 1 0 1

20 shifter

Ol
O~
0 O,

1 0 ~
1~ 1

01 0 1
0~1 1
0 h l
OlO 1
1 02 1
1 0 13
1 0 t
1 1 0 2
1 1 0 0 3

1 1 1 0 ~
1 1 13 1
i 11 1 I
h 1 1 I

01 1 I i I
I i~ 1 1 I
i I Io i i

0 0 1 ~

20 shifter

F I G . 2. H i g h s h i f t e r s a n d t h e i r o p e r a t i n g r e c o r d s

C O M P U T] ~ [~ S T U D I : E S O F T U R I N G M A C H I N E P R O B L E M S 203

machine in a fixed lot, we have ~wo fixed lines, namely the 0-line of card 1, 112
(coded 1110) and the stop-line 110 (coded 1100) which occupy the same bit: posb
ti0ns in every Turing machine coded in the lot. These are set up first in the stor-
age locations assigned for the machine table. Each of the four other lines can
have 12 possible cases. The program sets up these 12 eases of one line in the
corresponding bit locat,ions and oil's them into the machine table consecutively,
repeating this procedure 1728 times. Then the second line is set up, this time
with each ease repeated 12 times and the whole configuration of 144 entries
repeatedly oa'ed into the machine table 144 times. The third line is set up with
each ease tirs~ :repeated 144 times and the whole configuration of 1728 entries
repeatedly oa'ed into ~;he machine table 12 times. Finally, the last line is set up
with each of the 12 possibilities repeated 1728 times and o~'ed into the machine
table. In this way all possible machines in a lot are obtained and their coded
descriptions in the machine table are now ready for examination.

Previous work on the BB-3 problem led to the conjecture that SH(3) = 2!,
We therefore simulate the operation of each Turing machine in the four lots
through 21 shifts in our computer. If a machine stops in less than or equal to 2!
shifts, its shift-number and score are noted in a table and the machine is then
discarded. It is our hope tha t we can show later that all those machines that do

CARD 1
0 1 1 2
1 1 1 0

01
1 02
1 1
i 01
1 1
1 12
12 1

03 1 1
121

62 l

03

Turing Machine

0 01
1 10

Operating Record

CARD 3
0 1 0 1
1 0 1 2

65
1
h
1
1
1
1
1~-
1
1
12
1

63
03

6~ 1
1 12
h 1 ¢ ¢

02 1 1
1~ 1

1~.
02 1

13
6~

after 9 shif ts

af ter 19 shif ts

03
6~ 1
1 12
1~ 1 ~ after 29 shifts

Fro. 3. Operating record of the Turing machine whose serial number is 73075226 (octal)
showing the total recurrence pattern

204 S H E N L] [N A N D T I B O R R A D O

not stop in less than or equal to 21 shifts will never stop. Furthermore, deseriE0_
tions of machines that score six (or more) or shifled 20 or 21 times are printc~t
out. The collected statistics reveal the following: In all four lots, we have 26,07;
stoppers in less than or equal to 21 shifts (out of a total of 82,944), five maehir~es
which scored six, one machine which shifted 21 times and two machines tha~
shifted 20 times (see Figures 1 and 2 for their descriptions).

In order to reduce further the machine table size, we discard all machines i<,
lot 1 with no l ' s in the "(.all" positions of cards 2 and 3, and all machines it~ 10~.~
3 and 4 with no 3's in the "call" positions of cards 1 and 2. These are obvi0/~s
never-stoppers since the stop-lines can not be reached. In all four lots, 27,774
of t~i~ese machines are discarded.

The next step in the investigaiion is ~o discard those never-stoppers which
exhibit a recurrence patiern. The idea may be described briefly as follows. Sup-
pose we operate a givea Turing machine 3/1 and observe that card i scans a tape
square S~, containing the digit d after m shifts. Later, suppose the same card i
scans a square S, containing lhe same digit d after n shifts. If, relative to tl~e
scanned squares S,,~ and S,~, the lape conditions in both instances are identical,
it is clear that the same pattern of operation must repeat from then on a~d
hence the Turiag ma(:hine M is a never-stopper. We call this a total recurrer, ce
(see Figure 3). Further analysis reveals that we need not have to consider tt:~<~
total tape conditions in nmst cases. Suppose the square Sn is to the right of tire
square S,,~ and that, during the operation from m shifts to n shifts, the leftm0sv

CA[H) 1

0 1 1 2

1 1 1 0

0L
1
12

0e 0
0, I 0
l 12 0
l a 0 0
i 01 0
1 1 02
1 12 1
l a o 1
1 el 1
1 1 1~
1 la 0
1 ! 01
1 1 1
I 1 !a
! 1 1
1 I 1
l 1 1
l 1 la
1 1 l
1 l 1
1 1 1
I 1 1

Turing Machine

CARD 2
0 1 0 2

1 0 0 3

Operating Record

1
1
1
1
l
1
1
t

I
[

1
1

01
1 02
1 2 1 (
0 1
0t 1
1 16
la
1 0t

C A R D 3

0 1 0 1

1 1 1 1

a f te r 12 sh i f t s

a f te r 19 sh i f t s

I ! I i ! O~

FIG. 4. Operating record of the Turing machine whose serial number is 73121635 (octal)
showing the partial recurrence with left barrier

C O M P U T E I t S T U t) I E S OF T U R I N G M A C H I N E P R O B L E M S 205,

square scanned is S, which is, say]~ squares to the left of the square S,,,. We call
l.he squ~re which is /~; + 1 squares to the left of S,~ the left barrier relative to.
;%. Similarly, the left barrier relative to S,~ will be the square which is tc + 1
squares to the left of the square S~,. I t is cleat' then that if the tape conditions.
to the right of the left, barrier relative to S,,, after m shifts is identical to the tape
co~dition to the right of the left barrier relative to S,~ after n shifts, the same
sequence of operations nmst repeat and the Turing machine ell will never slop.
We c~ll this a partial recurrence pattern.

As an illustration, consider the Turing machine and its operating record in
Figure 4. Curd 2 scans a 1 after 12 shifts and again a 1 after 19 shifts, during
wtdeh the portion of the tape scanned is never more than one square to the left
of &~, the scanned square after 12 shifts. Since the portion of the tape to the
right of the left barrier relative to S,: is identical to the portion of the tape to the
right of the left barrier relative to S~9, we see that the same sequence of opera-
fi0ns must repeat from 19 to 26 shifts, and so on, progressing to the right. It. is
obvious theretbre that this machine will never stop.

If S~ is to the left of S,~, we may consider a right barrier similar to the left
barrier described above. An illustration of this case is given in Figure 5.

I CAR) 1

01 1 1 2
~{ 1 1 0

Turing Machine

CARD 2

0 I 1 0 3
1 1 1 1

Operating Record
01
I 02
Is 1

OaO 1
Ot 0 1
1 I,~ 1
1 01 1
1 1 1~
1 1 1 01
1 1 1 1
1 1 1 la
1 1 la 0
1 laO 0
1 la 0 0
l a 0 0 0

~ - ~ o o o
0~1 0 0 0 0 0
l 1 2 0 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0
I 1 131 0 0 0
1 l aO 1 0 0 0
laO 0 1 0 0 0

_ _ ~ 0 0 0 0 0 0
01 1 0 010 1 0 0

1

1 12 0 0 [0 0 0 0
1 1 Ot 0 [0 0 0 0

I

1 1 1 020 1 0 0
1 1 l a l] O 0 0 0

it ,~o 1 /o o o o
~ o 0_A ~ 0 o o o

CARI) 3
0 1 0 1
1 0 0 3

02
1
1
[

l
1

!

1
l
1
1
1
1
1

1
I
1
1
1
l
l

1

Fro. 5, Operating record of the Turing machine whose serial number is 73136623 (octal)
showing tile partial recurrence with right barrier

206 S H E N L I N A N D T I B O R R2~DO

If S~ happens to be the same square as Sm, we may use both the right barrier
and the left barrier. If the portion of the tape between the right and the left
barriers after m shifts is identical to that after n shifts, then a recurrence faust
appear and the machine will never stop.

Lot 1 Lot 2 Lol 3 Lot 4

73037233 73676261 70537311 70513754

73137233 73736122 70636711 70612634

73137123 71536037 70726711 7 0 7 1 2 6 3 4

73136523 73336333 72737311 72377034

73133271 71676261 71717312 72377234

73133251 73336133 72211715 72613234

73132742 73236333 72237311

73132542 73236133 72311715

73032532 72317716

73032632 72331715

73033132 72337311

73033271 72337315

73073271

73075221

Fio. 6. The forty holdouts

01
1 02
h 1

0 a l 1
01 1 1 I
1 12 1 1
1 1 12 1
1 1 1 12
1 1 1 1 0 s
1 1 1 13 1

1 1 ls 1 1

1 13 1 1 1
1 8 1 1 1 1

08 1 t 1 1 1
0 1 1 1 1 1 1 1
1 1 2 1 1 1 1 1
1 1 1 2 1 1 1 1

1 1 1 1 2 1 1 1

1 1 1 1 1 2 1 1
1 1 1 1 1 1 2 1

1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 ~
1 1 1 1 1 1 1 3 1
1 1 1 1 1 1 3 1 1

1 1 1 1 1 , 1 1 1

1 1 1 1 3 1 1 1 1
1 1 1 8 t 1 1 1 1

1 1 8 1 1 1 1 1 1
1 8 1 1 1 1 1 1 1

0 3 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1
1 1 2 1 1 1 1 1 1 1 1
1 1 1 2 1 1 1 1 1 1 1
1 1 1 lml 1 1 1 1 1
1 1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1
1 1 1 1 1 1 h l 1 t
1 1 1 1 1 1 1 1~1 1
1 1 1 1 1 1 1 1 12 l
1 1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1 1 0 2

,{,,o{

C A R D 2

0 1 0 3
1 1 1 2

__CARD 3

0 1 0 1
1 1 { I o 3 {

F I G . 7 . O p e r a t i n g r e c o r d of t h e T u r i n g m a c h i n e w h o s e s e r i a l n u m b e r is 73137233.

COMPUTER STUDIES OF TURING MACHINE PROBLEMS 207

Next, we construct a computer routine to discard never-stoppers showing the
recurrence patterns described above. For the Turing tape we use a machine
v,'ord of 36 bits with each bit representing a square and the starting square at
bit 18. We further identify the squares oil the tape by their "deviation" from
~l~.e starting square: the starting square has deviation 0, the square to the right
of the starting square has deviation 1, the square to the left of the stm'ting square
has deviation - 1 , and so on. Thus a square with a deviation D is represented
by the bit 18 -ff D. After each shift, the tape condition T, herein represented by
a single machine word of 36 bits, is stored in an appropriate tape table TB~;
corresponding to the card index i called and the digit j in the scanned square.
The shift-number at that time and t,he deviation of the scanned square are also
storm in the accompanying tables. Meanwhile the deviations of the scanned
square after each shift are further stored in another table (called the deviation
table), so that the maximum deviation DMAX and the mininmm deviation DM~N
may be determined for any portion of the operation of the Turing machine, say
between S, shifts and S,, shifts. This is to find out how far to the right and to the
left the scanning head has moved during this portion of the operation (for use
in finding the right and the left barriers). Whenever an entry T is made into a
tape table and the tape table was previously nonempty, tests are made for re-
currence as follows. If To is a previous entry in the table with associated shift-
mlmber so and deviation Do, and s is the shift-number and D the deviation as-
sociated with the present entry T, Do and D are compared. If Do < D, minir,mm
deviation DM~x is determined from the deviation table for the operation between
.so and s shifts. To is shifted left 18 + DM~X bits and T shifted left 18 + DM~N q-
D - Do bits and compared. If the resulting logical words are equal, the Turing
machine operated on is discarded. Otherwise, T is tested against another pre-
vious entry in the same tape table TB~j until all previous entries in the tape table
7'B~j are checked. If no recurrence pattern is found, the Turing machine is given
one more shift and the same procedure goes on. Symmetrical procedures hold
when Do > D. If Do = D, both DMAX and D~a~N are determined and I% and 7'
are eompared from bits 18 + DM~N to 18 -t- DMAx by the use of a mask.

A bound of 50 is set for the shift-number with a check for spill provided when-
ever the magnitude of the deviation exceeds 17. This is to insure that the portion
of the tape scanned can be contained entirely in a single machine word; and the
both-ways infinite portions of the tape to the right and to the left of the squares
represented by the 36-bit machine word which have never been scanned can
therefore be assumed to contain all 0% in all instances. If the machine does not
show the recurrence pattern after 50 shifts, it is retained in the machine table
and printed out later as a "holdout".

The results of this modest effort were quite unexpected. In all four lots, only
40 holdouts were left. Tha t these 40 holdouts are all never-stoppers will be shown
in Section III. In Figure 6, we give the descriptions of these 40 holdouts in
terms of their octal "serial numbers."

[II. The Forty Holdouts

As stated in Section II there remained 40 Turing machines which the computer
program failed to eliminate. According to our plan, these 40 holdouts
~vere checked by hand, and they were all recognized to be never-stoppers by

2 0 8 S H E N L [N A N D T [B O R R A D O I I

inspection of their operating records. The Figures 7, 8 and 9 show some typical
cases. To illustrate tile methods used to show that they are never-stoppers, we
discuss in detail two additional cases below.

As our first case, we consider the holdoul> whose operat ing record is shown i~
Figure 10. The cards of this machine are as follows.

0 1 1 2 0 0 0 3 0 1 0 1
1 1 1 0 1 1 1 2 1 1 0 3

By inspecting its operating record (Figure 10), we observe thae the following
t, ape situation appears repeatedly.

. . . [l l l l l [l l h [o [- • -

This leads to the question of what happens next when we have this type of tape
situation. A glance at card 3 reveals that the string of l 's is first extended to the
left by one. Let us use the code name X T N D L for this operation. After this, a
left shift is made (code name GOTOL), and control is transferred to card 1.
Card 1 orders printing a 1 over a 0 (MARK) ; there follows a sequence of shifts
to the right, after which control is transferred to card 3 at the right of the string

]PIG. 8.

Ol
1 0 x
131

Ot 1 1
1 1 2 1
1 0 h
1 0 0 0 z
I 0 0 a l
1 0,21 1
1~ 1 1 I

Oi 1 1 1 l

l h 1 1 l
1 0 h l I

1 0 0 1 2 1
1 0 0 0 1 2
I 0 0 0 0 0,2
1 0 0 0 0 3 1
1 0 0 021 1

1 0 0 3 1 1 1
! 0 2 1 1 1 1

h I 1 1 1 1
011 I 1 1 1 1
1 121 1 1 1 1
1 0 h l I I I

1 0 0 h l l I

1 0 0 0 1 2 1 1
1 0 0 0 0 1 2 1

l O 0 0 0 0 h
1 0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 3 1
I 0 0 0 0 0~1 l
1 0 0 0 0 a l I l
1 0 0 021 1 1 1
1 0 0 a l 1 1 l 1
1 O~ 1 ! 1 1 1 1
la 1 1 1 1 1 1 1

OL I 1 1 1 1 1 1 1

Operating record of

~ t 11__o_1

[_!b o12 t

I 1 J l O l J

the Turing machine whose serial number is 731332518

C O M P U T E R S T U D I E S O F T U R I N G M A C H I N E P R O B L E M S ~ 0 9

01
t 0~
1:~ 1

(h 0 l
0:~ 1 0 1
! lo 0 1

I 0 01 1
1 0 1 12
1 0 1 0 0i
1 0 I 0 1 0~

I 0 1 0 la I

1 0 1 0~ 0 1
1 0 I:~ 1 0 1

1 0'_, 0 1 0 1
la 1 0 1 0 l

0~ 0 1 0 1 0 1
02 0 I 0 1 0 1

0 ~ 1 0 1 0 1 0 1

1 1~ 0 1 0 1 0 1

1 0 01 1 0 1 0 l
1 0 1 I~ 0 1 0 1

1 0 1 0 01 1 0 1
1 0 I 0 1 1 ~ 0 1
1 0 / 0 1 0 01 1
I 0 1 0 1 0 1 1~

t 0 / 0 I 0 1 0 O~

1 0 1 0 1 0 1 0 1 0.~
1 0 1 0 1 0 1 0 1 3 1

1 0 1 0 1 0 1 0 ~ 0 1
1 0 1 0 l (} la 1 0 1
1 0 1 0 1 0,~ 0 l 0 1
1 0 1 0 1 3 1 0 1 0 1
1 0 1 0 ~ 0 1 0 1 0 1
1 0 1~ 1 0 1 0 1 0 l
1 02 0 1 0 I 0 1 0 I
1 3 1 0 I 0 l 0 I (} 1

0~ 0 1 0 I 0 1 0 1 0 1

t 12 ~__L[

-TYTo~

Fro, 9. Operating record of the Turing machine whose seritfl number is 73132742s

(FRE for find right end of the string of l 's) . This verbal description becomes
more intuitive by the use of the following flowchart, which indicated clearly that
the machine has entered into a loop without exit (the string merely gets longer
and longer to the left).

1

1

210 S H E N L I N A N D T I B O R R A D O

1

03 1

01 I 1

1 h 1
1 1 h

t 1 1
l i 1
I I l
I I 1
t 1 t
1 I 1
1 1 1
1 1 1
I l 1
I 1 h
I l~ I

I~ 1 I

0~ I I I

O~ 1 1 1 1

Fro. 10. Operating record of the

0t
i 0.,
D

0.~ !
0~ I 1
I 1~ 1
l I 1~
I 1 1 O~
1 1 1:1
1 1~ l

i~ I i

{h I 1 l
1 1 l l

12 1 l {
1 12 1 1
I 1 12 1
l i 1 1,~

1 l I ! O~

1 I 1 I~
I 1 h l

1 13 1 I
h I I I
I I i i

i I I I

I I I I

I I I I

1 1 1 1

h I I I
I 12 I I

I I I~i

I I I I~

I I I i 0~
l I I 1;,
I 1 la l
1 l l 1 1
la l 1 1
I I I I
l 1 l !
1 t i l
1 1 I l
1 1 I 1

]TT-iT~--I

0 0 0 8 [
I 11 112 =I LJ

Turing machine whose serial number is 73037233~

Now let us s tar t this machine, with its card 1, on an all-0 tape. After the second
shift, the tape situation 13 arises where the length of the str ing is one. From this
point on the sequence of events is shown by the above f lowchart and it is clear
t h a t this machine is a never-stopper. ::

As our second illustration, we consider the holdout wi th the serial number
73033132s and the following card description. ~i

i!!

C A R D 1 C A R D 2 ~ C A I ~ D 3

0 I 1 1 2 0 0 0 3 0 0 1 1
I 1 1 1 0 1 0 1 2 1 1 0 2

To come to a stop, this machine must get a tape s i tuat ion where card 1 scans 8

1,]] [11] I . Now card l is called only if card 3 scans a 0; and in this case,

to get the stop situation, we should have a 1 to the right, I 0~ [1 [[[. No~'

this si tuation cannot occur. Indeed, card 3 is called only if card 2 scans a 0 and
as the 0-line of card 2 shows, it overprints the square b y a 0 and shifts to the

COMPUTER STUDIES OF TURING MACHINE PROBLEMS 211

ldt. Hence card 3 will always scan a square with a 0 to the fight. Thus we see
that the stop situation is never reached by this machine.

Let us note that the approaches used in these two illustrations involve im-
portant ideas ("flowchart" and "back-tracking") of general use in various
fields.

IV. 5//(3) and Miscellaneous Comments

In the course of our work described above, several unexpected features turned
up. Originally, 3-card Turing machines showing the induction patterns of the
"holdouts" were discovered and programs were devised to eliminate them. This
approach proved to be difficult and of little use, since only a few could be so
diminated. Hence, if one should attempt to settle the BB-4 or the BB-5 problem,
efSdent programs to eliminate the Turing machines showing these patterns mus~
be devised since they will be necessarily too numerous to check by hand. Also,
new patterns must show up for increasing card numbers, since we know that
~(rt) is noncomputable [2].

We want to share an experience with the programmers among our readers. In
our experiments with the recurrence patterns, a bound of 18 was first set for the
shift-number and we were left with 46 holdouts. While operating each of the 46
m~chines by hand we found some to show recurrence patterns. This caused a
brief period of apprehension, well-known to programmers, about the possible
presence of some basic error in our program. However, a check showed that all
these contrary holdouts showed the recurrence patterns after 18 shifts, with
three showing right after 19 shifts! We were gratified that all these were elimb
'a~ted by increasing the shift bound in the final version of our program to 50.

Concerning the conjecture that SH(3) = 21, we note that SH(3) < SH*(3)
+ 2, where SH*(3) is the maximum of s(M) for valid BB-3 entries M normaP
ized in the manner discussed in Section II. We find from our work that StI*(3) =
21, so that SH(3) ___ 23. However, if there is a valid BB-3 entry M with s(M)

22, then upon renumbering the cards of M (readjusting the calling indices
and considering a mirror image if necessary), we must have a normalized valid
BB-3 entry M* in our four lots with either (i) ~(M*) = 21 and at least one
of the entries P,0, P20, Pa0 equal to zero; or (ii) s(M*) = 20 and at least two
of the entries P~0, P20, pa0 equal to zero. An inspection of the print-outs for the
20 and 21 shifters shows that this does not happen (Figure 2), and so SH(3)
= 21.

A question was raised by some BB-n enthusiasts as to whether a maximum
scorer in the BB-n game (a valid entry in the BB-n classification with a score of
~ (n)) must always have an unbroken string of l 's in its output tape when it
stops; the conjecture being that it must. An inspection of the prhlt-outs for the
iive 6-scorers shows that this need not be the case (Figure 1), and this question
is therefore also settled.

V. Conclusion

The reader will surely realize that if one attempts to apply the method de-
scribed above to the problem BB-1963, for example, then difficulties of pro-

