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Abstract. This  paper  solves a problem rela t ing to Tur ing machines arising in connection 
with the Busy Beaver  logical game [21. Specifically, with the help of a computer  program, 
the values of two very well-defined positive integers ~(3) and SH(3) are determined to b~ 
6 and 21 respectively. The functions Y2(n) and SH(n), however, are noncomputable fune. 
tions. 

I. Introduction 

lit, is assumed tha t  the reader is familiar with the discussion of Tur ing rnaehit~es 
in Kleene [1]. We operate here with binary Tur ing  machines with the alphabet 
O, 1. In the way of illustration, consider the following Tar ing  machine.  

CARl)  1 C A R l )  2 CARl)  3 

0 1 1 2  0 1 0 1  0 1 1 0 2  
1 1 1 3  1 1 1 2  1 1 1 1 0  

r a  , ( Actually, a I u r m g  machine is not  a machine, but  rather  a program (set of in- 
structions) spelled out in a fixed format ,  as illustrated above. The  instrueti0:ns 
are specified on a finite number  of "ca rds ; "  thus the above illustration shows a 
3-card Tur ing machine. The term "em'd"  seems to be preferable lo the term 
"s ta te"  or "internal  configuration," since the idea of a Tur ing  machine is n0t 
dependent  upon physical computers.  Let  us also note tha t  for reasons of con- 
venience we deviate from Kleene [11 b y  not permit t ing a "center  shift ." On each 
card, the leftmost e, olumn contains the  a lphabet  0, 1. The next column to the 
right, contains tile "overprint  by"  ins~xuetion. The  next column to the right c0n- 
gains the "shift"  instruction, where 0 is the code for left shift, 1 is the code for 
right shift. The r ightmost  eolmnn shows the "call"  instruction; it: shows tile its. 
dex of the card to which control is transferred. 

In the "call" positions, we may have any  one of the card indices (now 1, 2, 3) 
or we m a y  have 0, which is tile code for " s top"  (see the l-line of card 3). 

The Tm'ing machine operates on a potent ial ly  both-ways  infinite tape, divided 
into squares, each of which contains a 0 or 1. At  any  moment ,  one of these squares 
is scanned, and one of the cards is "in control"  in tile sense tha t  the instructions 
on tha t  card are to be executed. 

The  example below shows a si tuat ion where card 3 is in control and a 0 is 
scanned. (The • . .  a t  either end means  that  all squares not shown contain O's.) 

This  research was sponsored in pa r t  by  the  US Army Research Office (Durham) under 
grant  DA-ARO(D)-31-124-G312 with The Ohio S ~ ' ' t a le  [Jmvers t ty  Research Foundation. 

• The results of this paper appeared in part in this author's doctoral dissertation, The 
Ohio State University, 1963, under the guidance of Professor T. Rado. 

196 

Journal of the Association for Computing Machinery, Vol. 12, No. 2 (Aoril, 1965), ~op. 196-212 



COI~iPUTER STUDIES OF TURING MACIIINE PROBLEMS 197 

"-'_101 11i01 101.-. 
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Now let us start on an all-0 tape with its card 1, the Turing machine described 
above. We find that we receive the stop instruction after four shifts; the final 
tape situation is 

- . - i 0 1 1 1 1 1 0 1  . . . 

0 

Next., consider another 3-card Turing machine given below. 

CARl )  1 CARl)  2 ] CAI/D 3 

0 1 1 2  0 1 0 1  [ 0 1 0 2  
/ 

[ 1  1 0 3  1 1 1 2  ] 1 1 1 0  

Starting this machine on an all-0 tape with its card 1, we find that the stop in- 
struction is received after 13 shifts. The final tape situation is 

" " " [ 0 1 1 1 1 1 1 1 1 I I 1 1 1 0 1 .  • . 

0 

As a last illustration, consider the 3-card Turing machine shown below. 

C A R D  1 CARl)  2 CARD 3 f 

0 1 1 2  0 1 0 3  0 1 0 1  
1 1 1 0  1 1 1 2  1 1 0 3  

Starting this machine on an all-0 tape with its card 1, we find after a while that 
the machine fails to reach the situation required for stopping (see the l-line of 
(~ard 1). Now the question is: Will this machine ever stop? To get, better insight, 
it is convenient to use the following diagram for the "operating record" of the 
Turing machine. 

01 
1 02 
la 1 

0~1 1 
Oxl 1 1 
1 1 2 1 1  
1 1 1~ 1 
1 1 1 1.., 
1 1 1 1 O~ 
1 1 1 13 1 
1 1 13 1 1 
1 13 1 1 1 
13 1 1 1 t 

Oa 1 1 1 1 1 
01 1 1 1 1 1 1 
1 le I 1 1 I 1 
1 1 12 l 1 1 1 
1 1 1 I~ 1 1 1 
1 1 1 1 1~1 1 
1 1 1 1 1 1 2 1  
1 1 1 1 1 1 ls 

This diagram is obtained by showing the successive tape situations individually; 
it is very suggestive in formulating conjectures about the behavior of a machine. 
Each row of the diagram shows the tape only to the point (right and left) beyond 
which the tape contains 0's only. The subscripts in the various squares show the 



198 S H E N  L I N  A N D  T I B O R  :RADO 

index of the card in control. The previous diagram shows the operating record 
through the first 20 shifts. 

Looking at  the operating record, we note that  the tape situations which are 
framed there show a certain similarity; and so we surmise that  the machine is in 
a "loop" and hence will never stop. We return to this point later on in the Paper. 
For the moment, we merely observe that  it may be difficult (or even impossible) 
to determine by inspection whether or not a given machine will ever stop. 

As shown in the preceding discussion, the Turing machine 

CARD 1 
0 1 1 2  
1 1 1 3  

CARD 2 
0 1 0 1  
1 1 1 2  

CARD 3 
0 1 0 2  
1 1 1 0  

(started on an all-0 tape with its card 1) prints two l 's  on the tape by the time 
it stops. On the other hand, the Turing machine 

CARD 1 
0 1 1 2  
1 1 0 3  

CARD 2 
0 1 0 1  
i 1 1 2  

C AI~D 3 ] 

t 0 102 
1 1 1 0  

prints out six l 's  by the time it stops. 
The following problem arises: Consider, for a fixed positive integer n, the 

class Ks of all the n-card binary Turing machines (with the card format de- 
scribed above). Let M be a Turing machine in this class K s .  Start M, with its 
card 1, on an all& tape. If M stops after a while, then M is termed a valid entry 
in the BB-n contest (the n-card classification of the Busy Beaver logical game), 
and its score ~(M) is the number of l 's remaining on the tape at  the time it stops. 
Since Ks is a finite class (the number of n-card binary Turing machines is easily 
seen to be [4(n + 1)]~), tile number of valid entries in the BB-n contest is als0 
finite. Hence, the scores of these valid entries constitute a nonempty finite set of 
non-negative integers, and thus this set has a (unique) largest element which we 
denote by ~ (n), to stress that  this largest element depends upon the card- 
number n. I t  is practically trivial that  this function ~ (n) is not general re- 
cursive (see T. Rado [2, 3]). On the other hand, it may be possible to determine 
the value of _~ (n) for particular values of n. Trivially, ~ (1) = 1. As an 
exercise in a seminar, it has been shown that  ~ (2) = 4. The determination d 
the actual value of ~ (3) presented, however, quite unexpected difficulties, 
even though it was soon conjectured that  ~ (3) = 6. The problem mentioned 
above is to decide whether or not this conjecture is valid. 

The solution of this quite special problem was attempted by several coinpetent 
mathematicians and programmers, by means of increasingly elaborate computer 
programs. The first definite solution is contained in the present work. After some 
experimenting, one will readily observe that  the crux of the matter is, for any' 
card number n, the determination of the function SH(n) defined as follows. 
Each valid entry M in the BB-n contest performs a certain number s(M) of 
shifts by the time it stops; the function SH(n) is the maximum of s(M) for all 
valid entries in the BB-n contest. As shown in [2], the function SH(n) is not 
general recursive either. However, if for some particular value of n the value of 
SH(n) can be determined, then for the same value of n the value of ~ (n) can 
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also be effectively determined. Indeed, we merely run each n-card machine 
(starting with card 1 on an all-0 tape) through not more than SH(n) shifts; 
we note the scores of those that stop, and the largest one of these scores is then 

(u). 0II the basis of extensive computer experiments, it has been conjectured 
that SH(3) - 21; and a 3-card Turing machine that  shifted 21 times by the 
ti~e it stopped has been found. In the present work, we verify that  this con- 
jecture is also valid. 

Our interest in these very special problems was motivated by the fact that at 
present there is no formal concept available for the "effective calculability" of 
individual well-defined integers like ~ (4), ~ (5), . . -  . (We are indebted to 
Professor Kleene of the University of Wisconsin for this information.) We felt 
therefore that the actual evaluation of ~'~ (3), SH(3)  may yield some clues re- 
garding the formulation of a fruitful concept for the effective calculability (and 
n0nealculabillty) of individual well-defined integers. 

II. The Method 

The total number of 3-cardTuringmachines can easily be seen to be [4(3 + 1)]~ 
o~' about 17 million. We reduce this number by proper normalization (see 
below for details) to 82,944 which is then divided into four lots. For each 
lot, our computer program first generates the machines and stores their con- 
vcniently coded descriptions in a table which we call the machine table. Then the 
program finds and discards those machines that stop in not more than 21 shifts 

• and at the same time takes note of their scores and shift mnnbers (when they 
}ii 

stop). The list of the machines that  were not discarded is then scrambled up in 
tt~e machine table and the first 50 are printed out. (The purpose is to enable us 
t0 observe the behavior patterns of the undecided machines.) Their operating 
records are then made up and each is examined for some pattern of behavior 
i~dicating that the particular machine considered will never stop. From these, 
we observed a certain recurrence pattern (called below the partial recurrence) 
which we programmed. As a mat ter  of luck, it turned out that this simple re- 
currence pattern disposed of all but  40 of the machines. When the operating 
records of the 40 "holdouts" were examined, it turned out that they all showed 
patterns (discussed below) which enabled us to decide that all the 40 holdouts 
were never-stoppers. We may stress here a certain point of interest. Even though 
0~lly 40 holdouts were left, it was not  clear a priori that  it can be decided as to 
whether they are never-stoppers or not, for a given machine may exhibit such a 
bizarre operating record or exhibit patterns that occur only after a prohibitive 
~lun~ber of shifts tha t  no human being could be expected to decide that it will 
~ever stop. I t  is also entirelyo conceivable that we may have on our hands a 
Inachine which is undecidable for some logical reason. Luckily this did not 
t~appen in this particular case. In this manner it was established that those 
~iachines that stopped at all stopped in no more than 21 shifts. Since the pro- 
~ram showed us a stopper in 21 shifts, we conclude that SH(3) = 21 and the 
BB-3 problem was solved. 

ii We now proceed to some details of our work. 

The four lots. The  number of binary 3-card Turing machines is (see above) 
(4"4) ~ -~ 2 ~ = 16,777,216. However, in searching for the actual values of ~ ( 3 )  
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and SH(3) ,  it is sufficient to consider a subs(~(~ o:[ these m~ehines,  obtained ~5. 
the following considerations. First, let us obsorvc that  ~ll tim 3-card machines 
are of the form 

CARD 1 
0 P~o 8:o C:o 

1 ~)11 811Cll 

CAIID 2 

1 , ~7! ,~'~ ~.,~ ....... 

w h e r e p ~ =  0 o r  1, s~5= 0 o r  1, c ~ =  0 o r  1 o r 2  o r 3 .  N o w  consider one 0!, 
these machines; denote it by M0. Suppose :lIo is ~ w~lid BIL3 entry, with a 
score z(Mo) and shift number s(Mo). Let Mo* be tile "mi r ro r  image" of ;t0; 
that  is, the machine obtained by replacing (in the m rd s  for 21Io) each right 
shift by a left shift and each left shift by a right shift. Ev iden t ly ,  Mo* is again: 
a valid BB-3 entlT, and (r(Mo*) = c~(Mo), s(Mo*) = S(Mo). Accordingly, we 
can restrict ourselves to consider those 3-card machines for which 

S~o = 1. (2) 

Next, we note that if Mo is a wflid entry such that  

pl0 = p~o = p~o = 0, (3) 

then clearly c~(M0) = 0 and s(Mo) -< 3. Since we know th a t  ~ ( 3 )  > 6 and 
SH(3)  >_ 21, such a machine can be disregarded in searching for the actual 
value of ~ ( 3 )  and SH(3) .  Accordingly, it is sutficient to consider 3-card ma. 
chines for which at least one of p:0, p,~0, p.30 is equal to one. I t  is also clear that 
such a machine Mo is a valid BB-3 entry, then before Mo stops, a card Cs with 
p~'0 = 1 must have been used if the situation z(Mo) = O, s(Mo) =< 3 is to he 
avoided. Now let C~ be the card of M0 which is in control  when  Mo first over- 
prints a 1; then p~0 = 1. Let M0' be the machine obtained f rom Mo by renumber- 
ing the cards of Mo (and adjusting the call instructions c~j) so tha t  the original 
card C~ is renamed C1. Clearly z(Mo') = ~(M0), and s ( M , )  _< s(Mo') +2. 
After this modification, we can assume tha~ 

p:0 = 1. (4) 

Next, if we have now C:o = 0, then clearly z(Mo) - 1, s(Mo) = 1; hence any 
machine with c:0 = 0 tan be disregarded. Since then c:o ¢ 0, b y  renumbering the 
cards 2 and 3 of M0 (and adjusting the call numbers c~3), we can assume that 

c~o = 2. (5) 

Finally, if now c2o = 0, then clearly c,(Mo) _< 2, s(Jl.lo) = 2. Hence ,  the machines 
with c2o = 0 can be disregarded. [n view of (2),  (4), (5) we can therefore assume 
that  

p :o= 1, s :o= 1, c~0= 2, c ,2o~0,  (6) 

without changing the actual value of ~ ( 3 ) .  As regards SH(3) ,  it  is clear from 
the preceding comments that on denoting by SH*(3)  the m a x i m u m  of s(M) for 
valid BB-3 entries normalized in the manner shown in (6) ,  then SH(3) <- 
SH*(3)  + 2. 

Next, let Mo be a valid BB-3 entry. Even though there m a y  be several "stop- 
lines" in the cards for Mo, clearly only one of the several s top instructions will 
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acttlally be used. Accordingly, we caa assume that  exactly one of cH, ce,, ca0, 
c:;~ is equal to zero. Fm'thermore, the shift instruction in the unique stop-line of 
310 does not affeei: either ,r(M0) or s(Mo) ; hence we can assume that the stop- 
li~e orders a right shift. Finally, if we specify that  the stop-line shouM issue the 
-overpri~t by 1" instruction, then clearly we do not diminish (r(M,). Hence, 
we can assume thai; the stop-line has the form 1 10. Now the unique stop-line 
may occur in just four locations; namely, as the l-line of card 1, or as tile l-line 
of card 2, or the 0-line or l-line of card 3. I t  follows that tile machines that we 
have to investigate can be classified into four lots as shown below. 

L(~t 1 

Lol 2 

L d 3  

Lot 4 

CARD 1 I 

0 1 1  1 2 
1 [ 1  1 0 ' 

. . . . . .  . . . . . . .  t 

CARD 1 I ! 
0 [ 1  t 2 i 

I _1 l y  2 ,  s,, # 0 l  

1 i P'* sll #Oj 

CARD 1 
0 1 1 2 
1 p~l sj~ ~ 0  

I . . . . . . . . . . . . . . .  I CAI:{D 2 

! 0 pc0 s,.,0 ~ 0  

{ L,~_>, *::!_27 .... 

I 0 p~o seo >0 
i 1 1 1 0 

CARl)  2 

0 p~0 s~0 ~ 0  

[ CARl )  2 

0 pzo s~o ~ 0  
1 , pet s,2~ ~ 0  

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' CARl)  3 [ 

( - , 3 T : ; 7 - ; 7 7 i ; "  

. . . . . . . . . . . . . .  , j  . . . . . . . . . . . . . . . . . . . . . .  

C, AI, ) :; I 
. . . . . . . . . . . . . . . . . . . . . . . . .  ] 

0 pa0 s:;o ~ 0  

........ -i)XiiiT; a ............. 
- U i  T - T - g - ~  

0 pa0 sao ¢ 0  ] 
_ L_[_..!_. _Z__(L_.I 

A simple computation shows that  the mtmber of machines in each one of these 
lots is equal to 20,736. Thus (as fat' as ~ ( 3 )  is concerned) it is sufiieient to 
itwcstigate the 4.20,736 = 82,944 machines contained in the fore" lots. As re- 
gards SII(3), a little more work is involved; we return to this point later. 

We proceed Io outline the procedures we followed in treating these four lots. 

Description of the computer program. Each individual Turing machine is 
identified for the purpose of the program as follows. Each line of the Turing 
card is coded into a four-bit binary word (with the "call" instruction occupying 
two bits). They are then packed in sequence from the 0-line of card l, l-line of 
card 1, to the I-line of card 3 into a single machine word. TMs enables us to 
identify each machine in terms of a single word. For example, the machine 

~ 1 , 1 1 3  ] I l { [ 1 0 j  ~ 1  ] -00--2-]  
V077  

is coded as 

I l l  lOl111111o11111oo111ol [oolo~J 
For convenience we also use the octal representation of this binary number in 
referring to the Turing machine. Thus we identify the above machine also by 
its "serial number," 73736322. Since the number of maehirms in each lot is still 
too large to code by  hand, we generate these machines in our computer program 
by a generalized counting process and store them in a machine table. For each 
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01 
11 03 
1 0 0 3  
1 031 
13 1 1 

01 1 1 1 
1 12 1 1 
1 1 13 1 
1 1 1 12 
1 1 1 1 02 
1 1 1 1 0 03 
1 1 1 1 O a l  
i 1 I 12 1 1 
1 1 h 1 1 I 
1 1 1 12 1 1 

14 shifts 

CI C2 C3 ] 
| 

0 1 1 2  0 1 3  10 3 ]  
] 

1 1 1 0  1 1 2  1 0 1  | 
J 

Oi 
1 02 
11 1 

03 1 1 
02 1 1 1 

O: 1 I 1 1 
1 12 1 1 1 
1 1 12 1 1 
1 1 1 13 1 
1 1 1 1 12 
1 1 1 1 1 02 
1 1 1 1 111 
1 1 1 12 1 1 
1 1 1 1 Io 1 

13 shifts 

C: C2 C3 
-6- i-;7~- -7-67- -7~- I 

1 1 0 3  1 1 2  1 1 0 ]  

01 
1 03 
h 1 

02 0 1 
O~ 1 0 1 
1 110  1 
1 1 03 1 
1 1 1 h 
1 1 1 I 03 
1 1 1 1 1 O1 
1 1 1 1 1 1 02 
1 1 1 1 1 13 1 
1 1 1 1 120  1 
1 1 1 1 1 Oo 1 

13 shifts 

Ct C~ C~ 

[ 1 ] 1 1 3  [ 1 1 0  ] 00290~ 

01 
1 02 03 
13 1 1 03 

02 1 1 1 1 03 
03 1 1 1 1 11 1 
1 h 1 1 12 1 1 
1 1 t l l  0 2 0  1 1 
1 1 1 11 1 03 1 1 
1 1 1 1 01 h 1 1 1 
1 I 1 1 1 0s 03 1 1 1 1 
I 1 1 1 13 1 01 1 1 1 1 1 
1 1 1 12 1 1 1 13 1 1 1 1 
1 1 1 1 lo 1 1 1 lo 1 1 1 

12 shifts 11 shifts 

-6- ci-~-2 c, [ c3 ci c~ c~ 
103 113 i01 

I I I I  I f 0  102 ] I I 0  002 

F I O .  1. S c o r e  c h a m p s  a n d  t h e i r  o p e r a t i n g  r e c o r d s  

01 
1 O, 
h 1 

13 
O~ 1 
1 1~ 
1 0 0 3  
1 031 
131 1 

0 1 1 1 1  
1 h 1 1 
1 0 1.~1 
1 011 1 
1 1 h 1 
1 1 0 1 3  
1 1 011 
1 1 1 12 
1 1 1 0 0 3  
1 1 1 0 3 1  
1 1 131 1 
1 h 1 1 1 
1 1 131 1 

[_~_ CI C~ C3 ] 
l ~  1 0 2  1 0 3  

| 1 1 1 1 0 1 0 1 3  101 

21 shifter 

01 
I Os 
13 

Ot i 
1 12 
1 00a 
i 0, I 
13 1 I 

Ol I 1 1 
I 12 1 I 
I 0 hl 
i Oil I 
I 1 Is I 
1 I 0 h 
I 1 01 1 
1 I i 12 
1 I 1 0 0~ 
1 I 1 0 3 1  
1 1 18 1 1 
1 h 1 1 1 
1 1 l o l  1 

C3 C~ C8 
-~--yyT o--GT ~ i  

1 1 1 0  0 1 3  1 0 1  

20 shifter 

Ol 
O~ 
0 O, 

1 0 ~  
1~ 1 

01 0 1 
0~1 1 
0 h l  
OlO 1 
1 02 1 
1 0 13 
1 0 t  
1 1 0 2  
1 1 0 0 3  

1 1 1 0 ~  
1 1 13 1 
i 11 1 I 
h 1 1 I 

01 1 I i I 
I i~ 1 1 I 
i I Io i i 

0 0 1 ~  

20 shifter 

F I G .  2.  H i g h  s h i f t e r s  a n d  t h e i r  o p e r a t i n g  r e c o r d s  
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machine in a fixed lot, we have ~wo fixed lines, namely the 0-line of card 1, 112 
(coded 1110) and the stop-line 110 (coded 1100) which occupy the same bit: posb 
ti0ns in every Turing machine coded in the lot. These are set up first in the stor- 
age locations assigned for the machine table. Each of the four other lines can 
have 12 possible cases. The program sets up these 12 eases of one line in the 
corresponding bit locat,ions and oil's them into the machine table consecutively, 
repeating this procedure 1728 times. Then the second line is set up, this time 
with each ease repeated 12 times and the whole configuration of 144 entries 
repeatedly oa'ed into the machine table 144 times. The third line is set up with 
each ease tirs~ :repeated 144 times and the whole configuration of 1728 entries 
repeatedly oa'ed into ~;he machine table 12 times. Finally, the last line is set up 
with each of the 12 possibilities repeated 1728 times and o~'ed into the machine 
table. In this way all possible machines in a lot are obtained and their coded 
descriptions in the machine table are now ready for examination. 

Previous work on the BB-3 problem led to the conjecture that  SH(3)  = 2!, 
We therefore simulate the operation of each Turing machine in the four lots 
through 21 shifts in our computer. If  a machine stops in less than or equal to 2! 
shifts, its shift-number and score are noted in a table and the machine is then 
discarded. It  is our hope tha t  we can show later that  all those machines that  do 

CARD 1 
0 1 1 2  
1 1 1 0  

01 
1 02 
1 1 
i 01 
1 1 
1 12 
12 1 

03 1 1 
121 

62 l 

03 

Turing Machine 

0 01 
1 10 

Operating Record 

CARD 3 
0 1 0 1  
1 0 1 2  

65 
1 
h 
1 
1 
1 
1 
1~- 
1 
1 
12 
1 

63 
03 

6~ 1 
1 12 
h 1 ¢ ¢  

02 1 1 
1~ 1 

1~. 
02 1 

13 
6~ 

after 9 shif ts  

af ter  19 shif ts  

03 
6~ 1 
1 12 
1~ 1 ~ after  29 shifts 

Fro. 3. Operating record of the Turing machine whose serial number is 73075226 (octal) 
showing the total recurrence pattern 
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not stop in less than or equal to 21 shifts will never stop. Furthermore, deseriE0_ 
tions of machines that score six (or more) or shifled 20 or 21 times are printc~t 
out.  The collected statistics reveal the following: In all four lots, we have 26,07; 
stoppers in less than or equal to 21 shifts (out of a total of 82,944), five maehir~es 
which scored six, one machine which shifted 21 times and two machines tha~ 
shifted 20 times (see Figures 1 and 2 for their descriptions). 

In order to reduce further the machine table size, we discard all machines i<, 
lot 1 with no l ' s  in the "(.all" positions of cards 2 and 3, and all machines it~ 10~.~ 
3 and 4 with no 3's in the "call" positions of cards 1 and 2. These are obvi0/~s 
never-stoppers since the stop-lines can not be reached. In all four lots, 27,774 
of t~i~ese machines are discarded. 

The next step in the investigaiion is ~o discard those never-stoppers which 
exhibit a recurrence patiern. The idea may be described briefly as follows. Sup- 
pose we operate a givea Turing machine 3/1 and observe that card i scans a tape 
square S~, containing the digit d after m shifts. Later, suppose the same card i 
scans a square S,  containing lhe same digit d after n shifts. If, relative to tl~e 
scanned squares S,,~ and S,~, the lape conditions in both instances are identical, 
it is clear that  the same pattern of operation must repeat from then on a~d 
hence the Turiag ma(:hine M is a never-stopper. We call this a total recurrer, ce 
(see Figure 3). Further analysis reveals that  we need not have to consider tt:~<~ 
total tape conditions in nmst cases. Suppose the square Sn is to the right of tire 
square S,,~ and that, during the operation from m shifts to n shifts, the leftm0sv 

CA[H) 1 

0 1 1 2  

1 1 1 0  

0L 
1 
12 

0e 0 
0, I 0 
l 12 0 
l a 0  0 
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FIG. 4. Operating record of the Turing machine whose serial number is 73121635 (octal) 
showing the partial recurrence with left barrier 



C O M P U T E I t  S T U t ) I E S  OF T U R I N G  M A C H I N E  P R O B L E M S  205, 

square scanned is S, which is, say ]~ squares to the left of the square S,,,. We call 
l.he squ~re which is /~; + 1 squares to the left of S,~ the left barrier relative to. 
;%. Similarly, the left barrier relative to S,~ will be the square which is tc + 1 
squares to the left of the square S~,. I t  is cleat' then that if the tape conditions. 
to the right of the left, barrier relative to S,,, after m shifts is identical to the tape 
co~dition to the right of the left barrier relative to S,~ after n shifts, the same 
sequence of operations nmst repeat and the Turing machine ell will never slop. 
We c~ll this a partial recurrence pattern. 

As an illustration, consider the Turing machine and its operating record in 
Figure 4. Curd 2 scans a 1 after 12 shifts and again a 1 after 19 shifts, during 
wtdeh the portion of the tape scanned is never more than one square to the left 
of &~, the scanned square after 12 shifts. Since the portion of the tape to the 
right of the left barrier relative to S,: is identical to the portion of the tape to the 
right of the left barrier relative to S~9, we see that the same sequence of opera- 
fi0ns must repeat from 19 to 26 shifts, and so on, progressing to the right. It. is 
obvious theretbre that  this machine will never stop. 

If S~ is to the left of S,~, we may consider a right barrier similar to the left 
barrier described above. An illustration of this case is given in Figure 5. 
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Fro. 5, Operating record of the Turing machine whose serial number is 73136623 (octal) 
showing tile partial recurrence with right barrier 
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If  S~ happens to be the same square as Sm, we may use both the right barrier 
and the left barrier. If the portion of the tape between the right and the left 
barriers after m shifts is identical to that  after n shifts, then a recurrence faust 
appear and the machine will never stop. 

Lot 1 Lot 2 Lol 3 Lot 4 

73037233 73676261 70537311 70513754  

73137233  73736122 70636711 70612634  

73137123 71536037  70726711  7 0 7 1 2 6 3 4  

73136523  73336333 72737311 72377034  

73133271 71676261 71717312  72377234  

73133251 73336133 72211715  72613234  

73132742  73236333 72237311 

73132542  73236133 72311715  

73032532  72317716  

73032632 72331715  

73033132  72337311 

73033271 72337315  

73073271 

73075221 

Fio. 6. The forty holdouts 
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F I G .  7 .  O p e r a t i n g  r e c o r d  of  t h e  T u r i n g  m a c h i n e  w h o s e  s e r i a l  n u m b e r  is  73137233. 
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Next, we construct a computer routine to discard never-stoppers showing the 
recurrence patterns described above. For the Turing tape we use a machine 
v,'ord of 36 bits with each bit representing a square and the starting square at 
bit 18. We further identify the squares oil the tape by their "deviation" from 
~l~.e starting square: the starting square has deviation 0, the square to the right 
of the starting square has deviation 1, the square to the left of the stm'ting square 
has deviation - 1 ,  and so on. Thus a square with a deviation D is represented 
by the bit 18 -ff D. After each shift, the tape condition T, herein represented by 
a single machine word of 36 bits, is stored in an appropriate tape table TB~; 
corresponding to the card index i called and the digit j in the scanned square. 
The shift-number at that  time and t,he deviation of the scanned square are also 
storm in the accompanying tables. Meanwhile the deviations of the scanned 
square after each shift are further stored in another table (called the deviation 
table), so that the maximum deviation DMAX and the mininmm deviation DM~N 
may be determined for any portion of the operation of the Turing machine, say 
between S, shifts and S,, shifts. This is to find out how far to the right and to the 
left the scanning head has moved during this portion of the operation (for use 
in finding the right and the left barriers). Whenever an entry T is made into a 
tape table and the tape table was previously nonempty, tests are made for re- 
currence as follows. If To is a previous entry in the table with associated shift- 
mlmber so and deviation Do, and s is the shift-number and D the deviation as- 
sociated with the present entry T, Do and D are compared. If Do < D, minir,mm 
deviation DM~x is determined from the deviation table for the operation between 
.so and s shifts. To is shifted left 18 + DM~X bits and T shifted left 18 + DM~N q- 
D - Do bits and compared. If the resulting logical words are equal, the Turing 
machine operated on is discarded. Otherwise, T is tested against another pre- 
vious entry in the same tape table TB~j until all previous entries in the tape table 
7'B~j are checked. If no recurrence pattern is found, the Turing machine is given 
one more shift and the same procedure goes on. Symmetrical procedures hold 
when Do > D. If Do = D, both DMAX and D~a~N are determined and I% and 7' 
are eompared from bits 18 + DM~N to 18 -t- DMAx by the use of a mask. 

A bound of 50 is set for the shift-number with a check for spill provided when- 
ever the magnitude of the deviation exceeds 17. This is to insure that the portion 
of the tape scanned can be contained entirely in a single machine word; and the 
both-ways infinite portions of the tape to the right and to the left of the squares 
represented by the 36-bit machine word which have never been scanned can 
therefore be assumed to contain all 0% in all instances. If the machine does not 
show the recurrence pattern after 50 shifts, it is retained in the machine table 
and printed out later as a "holdout".  

The results of this modest effort were quite unexpected. In all four lots, only 
40 holdouts were left. Tha t  these 40 holdouts are all never-stoppers will be shown 
in Section III. In Figure 6, we give the descriptions of these 40 holdouts in 
terms of their octal "serial numbers." 

[II. The Forty Holdouts 

As stated in Section II  there remained 40 Turing machines which the computer 
program failed to eliminate. According to our plan, these 40 holdouts 
~vere checked by hand, and they were all recognized to be never-stoppers by 
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inspection of their operating records. The Figures 7, 8 and 9 show some typical 
cases. To illustrate tile methods used to show that  they are never-stoppers, we 
discuss in detail two additional cases below. 

As our first case, we consider the holdoul> whose operat ing record is shown i~ 
Figure 10. The cards of this machine are as follows. 

0 1 1 2  0 0 0 3  0 1 0 1  
1 1 1 0  1 1 1 2  1 1 0 3  

By  inspecting its operating record (Figure 10), we observe thae the following 
t, ape situation appears repeatedly. 

. . . [ l l l l l [ l l h [ o [ -  • - 

This leads to the question of what happens next when we have this type of tape 
situation. A glance at card 3 reveals that the string of l 's  is first extended to the 
left by one. Let us use the code name X T N D L  for this operation. After this, a 
left shift is made (code name GOTOL),  and control is transferred to card 1. 
Card 1 orders printing a 1 over a 0 (MARK) ; there follows a sequence of shifts 
to the right, after which control is transferred to card 3 at the right of the string 
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the Turing machine whose serial number is 731332518 
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Fro, 9. Operating record of the Turing machine whose seritfl number is 73132742s 

(FRE for find right end of the string of l 's) .  This verbal description becomes 
more intuitive by the use of the following flowchart, which indicated clearly that 
the machine has entered into a loop without exit (the string merely gets longer 
and longer to the left). 

1 

1 
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Fro. 10. Operating record of the 
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Turing machine whose serial number is 73037233~ 

Now let us s tar t  this machine, with its card 1, on an all-0 tape.  After  the second 
shift, the tape situation 13 arises where the length of the str ing is one. From this 
point  on the sequence of events is shown by  the  above  f lowchart  and it is clear 
t h a t  this machine is a never-stopper.  :: 

As our second illustration, we consider the holdout  wi th  the  serial number 
73033132s and the following card description. ~i 

i!! 

C A R D  1 C A R D  2 ~ C A I ~ D  3 

0 I 1 1 2 0 0 0 3 0 0 1 1 
I 1 1 1 0 1 0 1 2 1 1 0 2 

To  come to a stop, this machine must  get a tape  s i tuat ion where  card 1 scans 8 

1, ] ] [ 11 ] I . Now card l is called only if card 3 scans a 0; and in this case, 

to get  the stop situation, we should have a 1 to the  right,  I 0~ [ 1 [ [ [ . No~' 

this si tuation cannot occur. Indeed, card 3 is called only if card 2 scans a 0 and 
as the 0-line of card 2 shows, it overprints  the square b y  a 0 and  shifts to the 
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ldt. Hence card 3 will always scan a square with a 0 to the fight. Thus we see 
that the stop situation is never reached by this machine. 

Let us note that  the approaches used in these two illustrations involve im- 
portant ideas ("flowchart" and "back-tracking") of general use in various 
fields. 

IV. 5//(3) and Miscellaneous Comments 

In the course of our work described above, several unexpected features turned 
up. Originally, 3-card Turing machines showing the induction patterns of the 
"holdouts" were discovered and programs were devised to eliminate them. This 
approach proved to be difficult and of little use, since only a few could be so 
diminated. Hence, if one should attempt to settle the BB-4 or the BB-5 problem, 
efSdent programs to eliminate the Turing machines showing these patterns mus~ 
be devised since they will be necessarily too numerous to check by hand. Also, 
new patterns must show up for increasing card numbers, since we know that 
~(rt) is noncomputable [2]. 

We want to share an experience with the programmers among our readers. In 
our experiments with the recurrence patterns, a bound of 18 was first set for the 
shift-number and we were left with 46 holdouts. While operating each of the 46 
m~chines by hand we found some to show recurrence patterns. This caused a 
brief period of apprehension, well-known to programmers, about the possible 
presence of some basic error in our program. However, a check showed that  all 
these contrary holdouts showed the recurrence patterns after 18 shifts, with 
three showing right after 19 shifts! We were gratified that all these were elimb 
'a~ted by increasing the shift bound in the final version of our program to 50. 

Concerning the conjecture that  SH(3) = 21, we note that SH(3) < SH*(3) 
+ 2, where SH*(3) is the maximum of s(M) for valid BB-3 entries M normaP 
ized in the manner discussed in Section II. We find from our work that StI*(3) = 
21, so that SH(3) ___ 23. However, if there is a valid BB-3 entry M with s(M) 

22, then upon renumbering the cards of M (readjusting the calling indices 
and considering a mirror image if necessary), we must have a normalized valid 
BB-3 entry M* in our four lots with either (i) ~(M*) = 21 and at least one 
of the entries P,0, P20, Pa0 equal to zero; or (ii) s(M*) = 20 and at least two 
of the entries P~0, P20, pa0 equal to zero. An inspection of the print-outs for the 
20 and 21 shifters shows that  this does not happen (Figure 2), and so SH(3) 
= 21. 

A question was raised by some BB-n enthusiasts as to whether a maximum 
scorer in the BB-n game (a valid entry in the BB-n classification with a score of 
~ (n ) )  must always have an unbroken string of l 's  in its output tape when it 
stops; the conjecture being that  it must. An inspection of the prhlt-outs for the 
iive 6-scorers shows that  this need not be the case (Figure 1), and this question 
is therefore also settled. 

V. Conclusion 

The reader will surely realize that  if one attempts to apply the method de- 
scribed above to the problem BB-1963, for example, then difficulties of pro- 




