Computer Studies of Turing Machine Problems

Saex Lin*
Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

AND
Tisor Rapo

The Ohio State University and Baittelle Memorial Institute, Columbus, Ohio

Abstract. This paper solves a problem relating to Turing machines arising in conneetig,
with the Busy Beaver logical game [2]. Specifically, with the help of a computer progran
the values of two very well-defined positive integers =(3) and SH(3) are determined to be
6 and 21 respectively. The functions Z(n) and SH (n), however, are noncomputable fun,.
tions.

L. Inlroduction

It is assumed that the reader is familiar with the discussion of Turing machine
in Kleene {1]. We operate here with binary Turing machines with the alphabet
0, 1. In the way of illustration, consider the following Turing machine.

CARD 2 CARD 3 !
0] 101 0 [102 |
| 1] 112 1 {110 |

Actually, & Turing machine is not a machine, but rather a program (set of in-
structions) spelled out in a fixed format, as illustrated above. The instructions
are specified on a finite number of “cards;” thus the above illustration shows a
3-card Turing machine. The term “card” seems to be preferable to the term
“state” or “internal configuration,” since the idea of a Turing machine is not
dependent upon physical computers. Let us also note that for reasons of con-
venience we deviate from Kleene [1] by not permitting a “center shift.” On each
card, the leftmost column contains the alphabet 0, 1. The next column to the
right contains the “overprint by’ instruction. The next column to the right con-
tains the “shift” instruction, where 0 is the code for left shift, 1 is the code for
right shift. The rightmost column shows the “call” instruction; it shows the in-
dex of the card to which control is transferred.

In the “call” positions, we may have any one of the card indices (now 1, 2,3)
or we may have 0, which is the code for “stop” (see the 1-line of card 3).

The Turing machine operates on a potentially both-ways infinite tape, divided
into squares, each of which contains a 0 or 1. At any moment, one of these squares
is scanned, and one of the cards is “in control’’ in the sense that the instructions
on that card are to be executed.

The example below shows a situation where card 3 is in control and a 0
scanned. (The - -« at cither end means that all squares not shown contain 0’s.)

This research was sponsored in part by the US Army Research Office (Durham) under
grant DA-ARO(D)-31-124-G312 with The Ohio State University Rescarch Foundation.

* The results of this paper appeared in part in this author’s doctoral dissertation, The
Ohio State University, 1963, under the guidance of Professor T. Rado.

196

Journal of the Association for Computing Machinery, Vol, 12, No. 2 (April. 1965), pp. 196-212

COMPUTER STUDIES OF TURING MACHINE PROBLEMS 197

- olaTifoTilo]
3

Now let us start on an all-0 tape with its card 1, the T uring machine described
shove. We find that we receive the stop instruction after four shifts; the final
tape situation 18

o Tofi10] -
0

Next, consider another 3-card Turing machine given below,

CARD 1 | CARD 2 | " CARD 3
0j112 0101 01102
1103 1112 1110

Starting this machine on an all-0 tape with its card 1, we find that the stop in-
struction is received after 13 shifts. The final tape situation is

o Jofujijrfufifuijof.
0

As a last illustration, consider the 3-card Turing machine shown below.

CARD 1 CARD 2 CARD 3
01112 0,103 01101
11110 11112 11103

Starting this machine on an all-0 tape with its card 1, we find after a while that
the machine fails to reach the situation required for stopping (see the 1-line of
card 1). Now the question is: Will this machine ever stop? To get better insight,
it is convenient to use the following diagram for the “operating record” of the
Turing machine,

0
1 0
13 1
11
11

2

e
-

—ree
-

&

b b
3
&

— et am e g

<@
b5
I
— e e e e
e -

1
1
1
1
1
1
1
1
1

=
9

&

S e e Rt s s et e
[
il o e e

1
1
1
1
1
1
1

e e b S
e S RSP

e
O U

2

This diagram is obtained by showing the successive tape situations individually;
it is very suggestive in formulating conjectures about the behavior of a machine.
Each row of the diagram shows the tape only to the point (right and left) beyond
which the tape contains 0’s only. The subscripts in the various squares show the

198 SHEN LIN AND TIBOR RADO

index of the card in control. The previous diagram shows the operating recoy
through the first 20 shifts.

Looking at the operating record, we note that the tape situations which gy
framed there show a certain similarity; and so we surmise that the machine is iy
a “loop” and hence will never stop. We return to this point later on in the paper,
For the moment, we merely observe that it may be difficult (or even impossible)
to determine by inspection whether or not a given machine will ever stop.

As shown in the preceding discussion, the Turing machine

CARD 1 CARD 2 CARD 3
01112 0j101 0102
11113 11112 11110

(started on an all-0 tape with its card 1) prints two 1’s on the tape by the time
it stops. On the other hand, the Turing machine

CARD 1 CARD 2 CARD 3
01112 01101 0102
17103 11112 11110

prints out six 1’s by the time it stops.

The following problem arises: Consider, for a fixed positive integer n, the
class K, of all the n-card binary Turing machines (with the card format de-
scribed above). Let M be a Turing machine in this class K, . Start M, with its
card 1, on an all-0 tape. If M stops after a while, then 3 is termed a valid entry
in the BB-n contest (the n-card classification of the Busy Beaver logical game),
and its score a(M) is the number of 1’s remaining on the tape at the time it stops.
Since K, is a finite class (the number of n-card binary Turing machines is easily
seen to be [4(n + 1)I'"), the number of valid entries in the BB-n contest is also
finite. Hence, the scores of these valid entries constitute a nonempty finite set of
non-negative integers, and thus this set has a (unique) largest element which we
denote by 2 (n), to stress that this largest element depends upon the card-
number n. It is practically trivial that this function Y, (n) is not general re-
cursive (see T. Rado (2, 3]). On the other hand, it may be possible to determine
the value of 2 (n) for particular values of n. Trivially, > (1) = 1. Asan
exercise in a seminar, it has been shown that D, (2) = 4. The determination of
the actual value of Y, (3) presented, however, quite unexpected difficulties
even though it was soon conjectured that D (8) = 6. The problem mentioned
above is to decide whether or not this conjecture is valid.

The solution of this quite special problem was attempted by several competent
mathematicians and programmers, by means of inereasingly elaborate computer
programs. The first definite solution is contained in the present work. After some
experimenting, one will readily observe that the crux of the matter is, for any
card number n, the determination of the function SH(n) defined as follows.
Each valid entry M in the BB-n contest performs a certain number s(M) of
shifts by the time it stops; the function SH(n) is the maximum of s(M) foral
valid entries in the BB-n contest. As shown in [2], the function SH(n) is not
general recursive either. However, if for some particular value of n the value of
SH(n) can be determined, then for the same value of n the value of > (n) can

COMPUTER STUDIES OF TURING MACHINE PROBLEMS 199

also be effectively determined. Indeed, we merely run each n-card machine
(starting with card 1 on an all-0 tape) through not more than SH(n) shifts;
we note the scores of those that stop, and the largest one of these scores is then

(n). On the basis of extensive computer experiments, it has been conjectured
that SH(3) = 21; and a 3-card Turing machine that shifted 21 times by the
time it stopped has been found. In the present work, we verify that this con-
jecture 18 also valid.

Our interest in these very special problems was motivated by the fact that at
present there is no formal concept available for the “effective calculability” of
individual well-defined integers like 2. (4), 25(5), --- . (We are indebted to
Professor Kleene of the University of Wisconsin for this information.) We felt
therefore that the actual evaluation of) (3), SH(3) may yield some clues re-
garding the formulation of a fruitful concept for the effective calculability (and
nonealeulability) of individual well-defined integers.

1. The Method

The total number of 3-card Turing machines can easily be seen to be [4(3 + 1)]°
or about 17 million. We reduce this number by proper normalization (see
below for details) to 82,944 which is then divided into four lots. For each
lot, our computer program first generates the machines and stores their con-
veniently coded descriptions in a table which we call the machine table. Then the
program finds and discards those machines that stop in not more than 21 shifts
and at the same time takes note of their scores and shift numbers (when they
gtop). The list of the machines that were not discarded is then serambled up in
the machine table and the first 50 are printed out. (The purpose is to enable us
to observe the behavior patterns of the undecided machines.) Their operating
records are then made up and each is examined for some pattern of behavior
indicating that the particular machine considered will never stop. From these,
we observed a certain recurrence pattern (called below the partial recurrence)
which we programmed. As a matter of luck, it turned out that this simple re-
currence pattern disposed of all but 40 of the machines. When the operating
records of the 40 “holdouts” were examined, it turned out that they all showed
patterns (discussed below) which enabled us to decide that all the 40 holdouts
were never-stoppers. We may stress here a certain point of interest. Even though
only 40 holdouts were left, it was not clear a priori that it can be decided as to
whether they are never-stoppers or not, for a given machine may exhibit such a
bizarre operating record or exhibit patterns that occur only after a prohibitive
number of shifts that no human being could be expected to decide that it will
never stop. It is also entirely conceivable that we may have on our hands a
machine which is undecidable for some logical reason, Luckily this did not
happen in this particular case. In this manner it was established that those
machines that stopped at all stopped in no more than 21 shifts. Since the pro-
gram showed us a stopper in 21 shifts, we conclude that SH(3) = 21 and the
BB-3 problem was solved.

We now proceed to some details of our work.

T heéf our lots. The number of binary 3-card Turing machines is (see above)
(4-4)° = 2" = 16,777 216. However, in searching for the actual values of Y_(3)

200 SHEN LIN AND TIBOR RADO

and SH(3), it is sufficient to consider a subset of these machines, obtaineq }
the following considerations. First, let us observe that all the 3-card machiy,
are of the form §

| CARD 1 CARD 2 A_,;} f “““““““““ CARD 3]
[0 } Do S10 £10 | ‘ 0 | P20 S20 C2o “ 10 [Puo 33:;:(7- 0
1 P Su Gy ’ | 1 ! P2 Su C2 | j } WJ“J{(ENI_M‘E:E_(::H ‘

where p;; =0or 1, s;=00r1l, ¢i;=0 or Lor 2 or 3. Now consider ong ¢f
these machines; denote it by 3, . Suppose 3, is a valid BB-3 entry, \Vithg;
score o(M,) and shift number s(M,). Let M,* be the “mirror image” of M,
that is, the machine obtained by replacing (in the cards for M,) each l‘ighg
shift by a left shift and each left shift by & right shift. Evidently, a,* i i
a valid BB-3 entry, and o(M,™) = o(M,), s(M,*) = s(My). Accordingly, y
can restrict ourselves to consider those 3-card machines for which

Sgp = 1. (2)
Next, we note that if 4, is a valid entry such that
P = Poo = Py = 0, (3)

then clearly o(M;) = 0 and s(M,) < 3. Since we know that 2(3) = 6 ay
SH(3) = 21, such a machine can be disregarded in searching for the actul
value of >.(3) and SH(3). Accordingly, it is sufficient to consider 3-card my
chines for which at least one of py, pw, P2 is equal to one. Tt is also clear tht
such a machine M, is a valid BB-3 entry, then before M, stops, a card C; wih
pio = 1 must have been used if the situation ¢(3,) = 0, s(My) < 3 is tobe
avoided. Now let C; be the card of M, which is in control when M, first ove-
prints a 1; then py = 1. Let M, be the machine obtained from M, by renumbe:-
ing the cards of M, (and adjusting the call instructions ¢;;) so that the origml
card C; is renamed C,. Clearly (M) = (M), and s(My) < s(M) +2
After this modification, we can assume that

P = 1. (4)

Next, if we have now ¢y = 0, then clearly o(M,) = 1, s(M,) = 1; hence ay
machine with ¢;p = 0 can be disregarded. Since then ¢, # 0, by renumbering the
cards 2 and 3 of M, (and adjusting the call numbers ¢,;), we can assume thit

Cip = 2. (‘7)

Finally, if now ¢y = 0, then clearly o(My) £ 2, s(M,) = 2. Hence, the machines
with ¢z = 0 can be disregarded. In view of (2), (4), (5) we can therefore assume
that

Po=1, su=1, ¢p=2 ¢m#0, (6)

without changing the actual value of D (3). As regards SH(3), it is clear from
the preceding comments that on denoting by SH*(3) the maximum of s(M) for
valid BB-3 entries normalized in the manner shown in (6), then SH(3) 2
SH*(3) + 2.

Next, let M, be a valid BB-3 entry. Even though there may be several “stor
lines” in the cards for M, , clearly only one of the several stop instructions wil

COMPUTER STUDIES OF TURING MACHINE PROBLEMS 201

wtually be used. Accordingly, we can assume that exactly one of ¢, ex, ¢,
¢y, is equal to zero. Furthermore, the shift instruction in the unique stop-line of
1/, does not affect either ¢(34y) or s(4{y); hence we can assume that the stop-
line orders & right shift. Finally, if we specify that the stop-line should issue the
soverprint by 17 instruction, then clearly we do not diminish o(37;). Hence,
we can assume that the stop-line has the form 1 1 0. Now the unique stop-line
jay oceur in just four locations; namely, as the 1-line of card 1, or as the 1-line
of card 2, or the 0-line or 1-line of card 3. It follows that the machines that we
nave to investigate can be classified into four lots as shown below.

T CARD 1| | CARD 2
Lot 11 2 0 P20 S20 =0
Lwl l 0 1 Dar Su #0
 CARD 1 CARD 2
Lot 2 0o(1 1t 2 0 pao 820 50
} 1 P 81y =0 1 1 1 0
[carRD1 | CARD 2
Lot 3 0 1 1 2 0 | pao 20 50
1 P sy #0 L | par sy 20
CARD 1 CARD 2 5
Lot 4 0 1 1 2 0 | p2o 820 %0 0 1 pag sae #0
1| piosn #0 1| pa s #0 1_1 QQQQQQ Lwi_m()wm

A simple computation shows that the number of machines in each one of these
lots is equal to 20,736. Thus (as far as > 7(3) is concerned) it is sufficient to
investigate the 4-20,736 = 82,944 machines contained in the four lots. As re-
gards SH(3), a little more work is involved; we return to this point later,

We proceed to outline the procedures we followed in treating these four lots.

Description. of the compuler program. Bach individual Turing machine is
identified for the purpose of the program as follows. Each line of the Turing
card is coded into a four-bit binary word (with the “call” instruction occupying
two bits). They are then packed in sequence from the 0-line of card 1, 1-ine of
card 1, to the 1-line of card 3 into a single machine word. This enables us to
identify each machine in terms of a single word. For example, the machine

CARD L CARD 2
0112 0103
1113 l1l110

is roded as

11110|111131011]1100]1101]001@

For convenience we also use the octal representation of this binary number in
referring to the Turing machine. Thus we identify the above machine also by
its “serial number,” 73736322. Since the number of machines in each lot is still
too large to code by hand, we generate these machines in our computer program
by a generalized counting process and store them in & machine table. For each

SHEN LIN AND TIBOR RADO

202

Or

O

1 0
1a 1
0 0 1

031 01

1 0z

11

{

0s 1
01 1 1
61l 111

;1 1

01 11

1 L0 1

1 1211

1 2111 11 061
111 4

11 a1
1 11 1

211
1z 1
1111 1

11

11 11 0z

11110

11110

11110 0
1111 0s1
111 111

111111

1 02
1111 1l
111 111
1111 1el

1111

131

11111

1111101
11111 01

1111511

13 shifts

18 shifts

14 shifts

Cs
111
002

Cz

103
110

Ci
112
113

Cs
102
110

Cs
101
112

112
103

1

Cs

3

101

Cs
013

112

Cy
112
110

0

1 0
31
0z 1 1

01 11

1 1t

11 4Ll
1111

1 0,11

L1 11
01 1 11

0011111

11110

111110
1111 131
111 111
1111 Lt

1 1111

11 1111

11 shifts

12 shifts

Cs
101
002

Cz
1138
110

CL

112
103

Cs

111
102

C:
103
110

Cy
112
111

Score champs and their operating records

Fia. 1.

0y

1 0

S =
o o
Sod
PR—
o
5

o
—-

o
=

-
—- e
S8

-

—

o
-t

1 1z

—

—

(=1

1 0 0s
1 051

1 011

1 01
131 1

[T |

10 131

1

11
60111

1 001

11 021
110 1

110

1 1211

1 11

10 1p1

1 0011

1 0 151
10011

111 0.

11121

12 1
110 1z

1110 0
111 031
11 1,11
1 L0011
Lio11

011011

110 13
1101

111 12

1110 6
111 01
11 131 1

o
o D
S o
— e

—

111 0;1
11 111
1 11111
11 11t

1 121011

11 L0011

Cs
103
001

Cs

013

110

Ci
112
101

Cs
103
101

Cy
003
013

Cy

112
110

Cs

103
101

Ca
102
013

C1
112
110

20 shifter

20 shifter

21 skifter

Fie. 2. High shifters and their operating records

COMPUTER STUDIES OF TURING MACHINE PROBLEMS 203

machine in a fixed lot, we have two fixed lines, namely the 0-line of card 1, 112
(coded 1110) and the stop-line 110 (coded 1100) which oceupy the same bit posi-
tions in every Turing machine coded in the lot. These are set up first in the stor-
age locations assigned for the machine table. Each of the four other lines can
pave 12 possible cases. The program sets up these 12 cases of one line in the
corresponding bit locations and or’s them into the machine table consecutively,
repeating this procedure 1728 times. Then the second line is set up, this time
with each case repeated 12 times and the whole configuration of 144 entries
repeatedly or’ed into the machine table 144 times. The third line is set up with
each case first repeated 144 times and the whole configuration of 1728 entries
repeatedly or’ed into the machine table 12 times. Finally, the last line is set up
with each of the 12 possibilities repeated 1728 times and or’ed into the machine
table. In this way all possible machines in a lot are obtained and their coded
descriptions in the machine table are now ready for examination.

Previous work on the BB-3 problem led to the conjecture that SH(3) = 21,
We therefore simulate the operation of each Turing machine in the four lots
through 21 shifts in our computer. If a machine stops in less than or equal to 21
shifts, its shift-number and score are noted in a table and the machine is then
discarded. It is our hope that we can show later that all those machines that do

Turing Machine

CARD 1 CARD 2 CARD 3
0 112 0013 0101
1110 11102 11012
Operating Record
01
1 0
11 0;
1 011
11 1
1 121
121 1
021 11
111
12 1 e———e—— after 9 shifts
01 1
1a 1
1z
0 1
1s
02
03
1
1 1s
12 1 ¢ after 19 shifts
021 1
I 1
12
0 1
13
02
0s
1
1 12

Iz 1 ¢~ after 29 shifts

F1a.3. Operating record of the Turing machine whose serial number is 73075226 (octal)
showing the total recurrence pattern

204 SHEN LIN AND TIBOR RADO

not stop in less than or equal to 21 shifts will never stop. Furthermore, deserip,.
tions of machines that score six (or more) or shifted 20 or 21 times are printeg
out. The collected statistics reveal the following: In all four lots, we have 26073
stoppers in less than or equal to 21 shifts (out of a total of 82,944), five machine,
which scored six, one machine which shifted 21 tines and two machines thy;
shifted 20 times (see Figures 1 and 2 for their descriptions),

In order to reduce further the machine table size, we discard all machines iy,
lot 1 with no 1’s in the “call” positions of cards 2 and 3, and all machines in o
3 and 4 with no 3% in the “call” positions of cards 1 and 2. These are obvigs
never-stoppers since the stop-lines can not be reached. In all four lots, 27774
of these machines are discarded.

The next step in the investigation is to discard those never-stoppers which
exhibit a recurrence pattern. The idea may be described briefly as follows. Sup.
pose we operate a given Turing machine M and observe that card 7 scans a tape
square S, containing the digit d after m shifts. Later, suppose the same card ;
scans a square S, containing the same digit d after n shifts. If, relative to the
scanned squares S, and S, , the tape conditions in both instances are identica},
it is clear that the same pattern of operation must repeat from then on and
hence the Turing machine M is a never-stopper. We call this a total recurrence
(see Figure 3). Further analysis reveals that we need not have to consider the
total tape conditions in most cases. Suppose the square S, is to the right of the
square S,, and that, during the operation from m shifts to n shifts, the leftmos:

Turing Machine

CARD 1 CARD 2 ~CARD 3
0112 01102 0101
11110 17003 17111

Operating Record

0
1
03 0 1
001 0 1
1 1.0 1
120 0 1
1 0001
11 021
t

1

I

{

1

1

1

——eeeeeeee— after 12 shifts

1
I3
1
1
1
1
1
1
1
t 11 0
1 i 12 | é——m . after 19 shifts
1 30 1

1 1 0u 1

1 11 L

1 1

1 11 0

1 11 0

Frc¢. 4. Operating record of the Turing machine whose serial number is 73121635 (octad)

showing the partial recurrence with left barrier

COMPUTER STUDIES OF TURING MACHINE PROBLEMS 205

square scanned is S, which 18, say & squares to the left of the square S, . We call
ihe square which is & + 1 squares to the left of S,, the left barrier velative to-
s, . Similarly, the left barrier relative to S, will be the square which is &k + 1
squares to the left of the square S, . It is clear then that if the (ape conditions.
1o the right of the left barrier relative to S,, after m shifts is identical to the tape
condition to the right of the lelt barrier relative to S, after n shifts, the same
sequence of operations must repeat and the Turing machine M will never stop.
We call this a partial recurrence pattern.

As an illustration, consider the Turing machine and its operating record in
Figure 4. Card 2 scans a 1 after 12 shifts and again a 1 after 19 shifts, during
which the portion of the tape scanned is never more than one square to the left
of Sy, the scanned square after 12 shifts. Since the portion of the tape to the
right of the left barrier relative to Sy, is identical to the portion of the tape to the
right of the left barrier relative to Sy, we see that the same sequence of opera-
tions must repeat from 19 to 26 shifts, and so on, progressing to the right. It is
obvious therefore that this machine will never stop.)

If 8, is to the left of S,., we may consider a right barrier similar to the left
barrier described above. An illustration of this case is given in Figure 5.

Turing Machine

[CARD 1 CARD 2 CARD 3 |
01 112 0103 0101
1110 | 1111 1,003

Operating Record

01

1 0

st

03 0 1

01 0t

1 01

11 01

111 I
11116
11111 0
1111 131
111 1501
11 15001
1 136 001
130 0001
CJos0 0j0 0 01
0:1 0 0[00C 01
1 120 010 0 01
11 000]0 0901
I 1100001
11 15110 001
1 130 170 0 0 1
1230 0 1700 90 1
_j6s0 0|0t 0001
61 00[01 0001
1 1,0 0{0 1 0 06 0 1
11 0001 0001
1 11 0J0 1 0 0 0t
11 131101 00601
1 10 1j0 1 0 00
1300 101 0001

12

’ FI'G. 5. Operating record of the Turing machine whose serial number is 73136623 (octal)
*owing the partial recurrence with right barrier

206 SHEN LIN AND TIBOR RADO

If S. happens to be the same square as S, , we may use both the right barie
and the left barrier. If the portion of the tape between the right and the L
barriers after m shifts is identical to that after n shifts, then a recurrence myg;
appear and the machine will never stop.

Lot 1 Lot2 Lot 3 Lot 4
73037233 73676261 705637311 70513754
73137233 73736122 70636711 70612634
73137123 71536037 70726711 70712634
73136523 73336333 72737311 72377034
73133271 71676261 71717312 72377234
73133251 73336133 72211715 72613234
73132742 73236333 72237311
73132542 73236133 72311715

73032532 72317716
73032632 72331715
73033132 72337311
73033271 72337315
73073271
73075221

F1a. 6. The forty holdouts

[
1 0z
13 1
0: 1 1
0r1 11
1 a1 1
11 121
111 12
1111 0
111 1l
11 1311 CARD |
1 131 1 1 04112
te1 1 11 11110
01 11 11
01 11111
1 1211111
1111111
1111111 CARD 2
11111211 01103
11111 11 1112
1111111
I 111111 0
111111 131
11111 1311
111113111 CARD 3
111131111 0101
11 111111 11103
1 131 11111
131111111
01 1111111
061 £ 1111111
1 111111111
11121111111
111 12111111
11111511111
11111 11111
11111115111
1111111 111
11111111 151
111111111 1
111111111180

F1e. 7. Operating record of the Turing machine whose serial number is 73137233:

COMPUTER STUDIES OF TURING MACHINT PROBLEMS 207

Next, we construct a computer routine to discard never-stoppers showing the
recurrence patterns deseribed above. Tor the Turing tape we use a machine
word of 36 bits with each bit representing a square and the starting square at
bit 18. We further identify the squares on the tape by their “deviation” from
the starting square: the starting square has deviation 0, the square to the right
of the starting square has deviation 1, the square to the left of the starting squére
has deviation —1, and so on. Thus a square with a deviation D is represented
by the bit 18 + D. After each shift, the tape condition T, herein represented by
2 single machine word of 36 bits, is stored in an appropriate tape table TB;;
corresponding to the card index ¢ called and the digit J in the scanned square.
The shift-number at that time and the deviation of the scanned square are also
stored in the accompanying tables. Meanwhile the deviations of the scanned
square after each shift are further stored in another table (called the deviation
table), so that the maximum deviation Dyax and the minimum deviation Dyirx
may be determined for any portion of the operation of the Turing machine, say
between S; shifts and 8. shifts. This is to find out how far to the right and to the
left the scanning head has moved during this portion of the operation (for use
in finding the right and the left barriers). Whenever an entry T is made into g
tape table and the tape table was previously nonempty, tests are made for re-
currence as follows. If T is a previous entry in the table with associated shift-
number s, and deviation Dy, and s is the shift-number and D the deviation as-
sociated with the present entry T, Dy and D are compared. If D, < D, minimum
deviation Dy is determined from the deviation table for the operation between
spand s shifts. T is shifted left 18 + Dy bits and 7T shifted left 18 + Dy +
D = Dy bits and compared. If the resulting logical words are equal, the Turing
machine operated on is discarded. Otherwise, T is tested against another pre-
vious entry in the same tape table TB;; until all previous entries in the tape table
T'Bi; are checked. If no recurrence pattern is found, the Turing machine is given
one more shift and the same procedure goes on. Symmetrical procedures hold
when Dy > D. If Dy = D, both Dyax and Dy are determined and T, and T
are compared from bits 18 + Dy to 18 + Dyax by the use of a mask.

A bound of 50 is set for the shift-number with a check for spill provided when-
ever the magnitude of the deviation exceeds 17. This is to insure that the portion
of the tape scanned can be contained entirely in a single machine word; and the
both-ways infinite portions of the tape to the right and to the left of the squares
represented by the 36-bit machine word which have never been scanned can
therefore be assumed to contain all 0’s in all instances. If the machine does not
show the recurrence pattern after 50 shifts, it is retained in the machine table
and printed out later as a “holdout”.

The results of this modest effort were quite unexpected. In all four lots, only
40 holdouts were left. That these 40 holdouts are all never-stoppers will be shown
in Section IIT. In Figure 6, we give the descriptions of these 40 holdouts in
terms of their octal “serial numbers.”

[L. The Forty Holdouts

As stated in Section II there remained 40 Turing machines which the computer
Pbrogram failed to eliminate. According to our plan, these 40 holdouts
were checked by hand, and they were all recognized to be never-stoppers by

208 SHEN LIN AND TIBOR RADO

inspection of their operating records. The Figures 7, 8 and 9 show some typicy
cases. To illustrate the methods used to show that they are never-stoppers, y,
discuss in detail two additional cases below.

As our first case, we cousider the holdout whose operating record is shown
Figure 10. The cards of this machine are as follows.

CARD 1 CARD 2 | CARD 3
0112 0003 0‘101
1]110 1112 1103

By inspecting its operating record (Figure 10), we observe that the following
tape situation appears repeatedly.

el

This leads to the question of what happens next when we have this type of tap
situation. A glance at card 3 reveals that the string of 1’s is first extended to th
left by one. Let us use the code name XTNDL for this operation. After this 4
left shift is made (code name GOTOL), and control is transferred to card 1,
Card 1 orders printing a 1 over a 0 (MARXK); there follows a sequence of shifis
to the right, after which control is transferred to card 3 at the right of the string

0y
i 0
Iz 1
0t 1
1 21
10 1
100 0
10 01
1 01 1
1.1 11
001 111 CARD l___
I 11 11 ol 112
10 121t 1 110
100 Izt
1000 12
1.0 00 0 0
1000 021
100 0,1 1 C}i\RD2
100111 0103
{01111 1012
L1 1111
00t 1t 1111
1t 121 1111
10 121 111
100 121 11 CARD 3
1000 11 1 0] 1o
L0OOO O 121 11101
100000 1
10006000 0
1 00000O0O01
L0000 01 ¢
1000 01 11
10600111y
10011111
1 01 11111
L1 t111111
Gl 1111111

Fie. 8. Operating record of the Turing machine whose serial number is 73133251

COMPUTER STUDIES OF TURING MACHINE PROBLEMS 209

01
1 0
I3 1
0, 0 1
031 0 1
1 120 1
10 00t
1 01 1
101 0 0
101 01 0
1010 1t I CARD 1
101 06:0 1 {0‘112
10 431 01 11!110
1 060101
1 01 061
00 1 0t 0 1
00 1 01 01
01 G101 01
t 20101 01
1001 0101
101 101 01
101 001 01
10101 L0t
10101 0 01
10106101 I
10 L0101 0 6 CARD 3
161010101 0 0112
10161010131 1 602
101 61t 01 001
1010164 131 01
1 ¢1 01 006101
1010 110101
101 0010101
10 11010101
1 06061010101
31 01010101
001 01 010101

Fre 9. Operating record of the Turing machine whose serial number is 73132742,

[FRE for find right end of the string of 1’s). This verbal description becomes
more intuitive by the use of the following flowchart, which indicated clearly that
the machine has entered into a loop without exit (the string merely gets longer
and longer to the left).

LQQPOL
MARK]

FRE

210 SHEN LIN AND TIBOR RADC

0
1 02
1z
05 1
Dt ol
[t d
11 L
1110
11 L
J R PO =
511 {CARIM
0: 1 11 jouz
0111l |1l tto
I L1 tt
1L Lt !
111 It
IR
111ttt CARD 2
L0l 0003
111t 11112
IR ERTR !
L ts1 11
1111
011111
mr 11111 CARDd‘i
1 11111 0] 101 |
11t 11 1103
L1t 11
1111 11
NN
R EEE
R EER
BEEREE
111t L gt
1111t 1
{11 511t
1Lttt
P11 11t
L1l 1!
b1 1L 111 1!
11111111

Fre. 10. Operating re(;ord of the Turing machine whose serial number is 73037233,

Now let us start this machine, with its card 1, on an all-0 tape. After the second
shift, the tape situation 1; arises where the length of the string is one. From this
point on the sequence of events is shown by the above flowchart and it is clear
that this machine is a never-stopper.

As our second illustration, we consider the holdout with the serial number
730331323 and the following card description.

CARD 1 CARD 2 CARD 3
0112 01003 01011
17110 17012 1,102

To come to a stop, this machine must get a tape situation where card 1 scansé

L, || 11| .Nowcard1is called only if card 3 scans a 0; and in this case,
to get the stop situation, we should have a 1 to the right, | 0 | 1 | | | .No¥

this situation cannot oceur. Indeed, card 3 is called only if card 2 scans a 0 and
as the 0-line of card 2 shows, it overprints the square by a 0 and shifts to the

COMPUTER STUDIES OF TURING MACHINE PROBLEMS 211

left. Hence card 3 will always scan a square with a 0 to the right. Thus we see
that the stop situation is never reached by this machine.

Let us note that the approaches used in these two illustrations involve im-
portant ideas (“flowchart” and ‘“back-tracking”) of general use in various

fields.

1v. SH(3) and Miscellaneous Comments

In the course of our work described above, several unexpected features turned
up. Originally, 3-card Turing machines showing the induction patterns of the
“holdouts” were discovered and programs were devised to eliminate them. This
approach proved to be difficult and of little use, since only a few could be so
eliminated. Hence, if one should attempt to settle the BB-4 or the BB-5 problem,
efficient programs to eliminate the Turing machines showing these patterns must
be devised since they will be necessarily too numerous to check by hand. Also,
new patterns must show up for increasing card numbers, since we know that
Y (n) is noncomputable [2].

We want to share an experience with the programmers among our readers. In
our experiments with the recurrence patterns, a bound of 18 was first set for the
shift-number and we were left with 46 holdouts. While operating each of the 46
machines by hand we found some to show recurrence patterns. This caused a
brief period of apprehension, well-known to programmers, about the possible
presence of some basic error in our program. However, a check showed that all
these contrary holdouts showed the recurrence patterns after 18 shifts, with
three showing right after 19 shifts! We were gratified that all these were elimi-
nated by increasing the shift bound in the final version of our program to 50.

Concerning the conjecture that SH(3) = 21, we note that SH(3) < SH*(3)
+ 2, where SH*(3) is the maximum of s(3) for valid BB-3 entries M normal-
ized in the manner discussed in Section IT. We find from our work that SH*(3) =
21, so that SH(3) < 23. However, if there is a valid BB-3 entry M with s(M)
2 22, then upon renumbering the cards of M (readjusting the calling indices
and considering a mirror image if necessary), we must have a normalized valid
BB-3 entry M™ in our four lots with either (i) s(M*) = 21 and at least one
of the entries py , P , P equal to zero; or (i) s(M*) = 20 and at least two
of the entries py , P , P20 equal to zero. An inspection of the print-outs for the
20 and 21 shifters shows that this does not happen (Figure 2), and so SH(3)
= 21,

A question was raised by some BB-n enthusiasts as to whether a maximum
scorer in the BB-n game (a valid entry in the BB-n classification with a score of

(n)) must always have an unbroken string of 1’s in its output tape when it
stops; the conjecture being that it must. An inspection of the print-outs for the
iﬁve 6-scorers shows that this need not be the case (Figure 1), and this question
15 therefore also settled.

V. Conclusion

The reader will surely realize that if one attempts to apply the method de-
scribed above to the problem BB-1963, for example, then difficulties of pro-

212 SHEN LIN AND TIBOR RADO

hibitive character are bound to arise. In the first place, the number of cases be- |
comes astronomical, and the storage and execution for the computer programs
involved will defeat any efforts to use existing computers. Even if we assume
that somehow we manage to squeeze through the computer the portion of our
approach involving partial recurrence patterns, the number of holdouts may be -
expected to be enormous. Over and beyond such “physical” difficulties, there is
the basic fact of the noncomputability of > (n), which implies that no single
finite computer program exists that will furnish the value of 2 (n) for every n.

In the absence (at present) of a formal concept of “noncalculability” for indi-
vidual well-defined integers, it is of course not possible to state in precise form
the conjecture that there exist values of n for which 2_(n) is not effectively
caleulable. Several colleagues (including Dr. C. Y. Lee of the Bell Telephone
Laboratories) pointed out to us the wide significance of these issues; we hope to
return to some of these in a paper now under preparation.

Acknowledgments. 'The authors wish to thank Dr. C. Y. Lee of the Bell Tele-
phone Laboratories, Incorporated, for many stimulating comments, and Dr,
Roy F. Reeves, Director of the Numerical Computation Laboratory, The Ohio
State University, for the use of the computing facilities.

Rece1rvED MARCH, 1963; REVISED AUGUST, 1964

ADDENDUM

A family of BB-n machines that achieve fantastically enormous scores for
n = 8 has been constructed by Mr. Milton W. Green of Stanford Research
Institute [Proceedings of the 5th Annual Symposium on Switching Circuit Theory
and Logical Design, October 1964, pages 01-94]. Further developments along the
lines suggested by the absolutely overwhelming results of Mr. Green will be
presented in a forthcoming paper by T. Rado and J. Randels of The Ohio State
University.

REFERENCES

1. KLEENE, 8. C. Introduction to Metamathematics. D. Van Nostrand, Princeton, 1952.
2. Rapo, T. On non-computable functions. Bell Sys. Tech. J. 41,3 (May, 1962).
3. ——. On Non-Computable Functions. The Bell Telephone System Monograph 4199, 1962.

