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ON A SIMPLE SOURCE FOR NON-COMPUTABLE FUNCTIONS®

Tibor Rado™™
Department of Mathematics
The Ohio State University, Columbus, Ohio

Ie a paper published in the Bell System Technical Journal, I showed how
a series of simply and clearly defined non-computable functions can be constructed,
using only the principle that if E is a non-empty, finite set of non-negative integers,
then E has a (unique) largest element. The purpose of the present paper is two-fold.
First, scme even moze primitively defined non-computable functions (derived from the
same principle) will be exhibited. Next, the following question will be considered. In
binary d:gital computers with fixed word-length, the sort of phenomenon referred to above
does not arise. Accordingly, there arises the possibility of constructing a model of
arithmetic in which the “principle of the largest element” yields computable functions

oaly. Comments on progress in this direction will be made to suggest plausible
approackes.

I. INTRODUCTION

The following simple fact is of constant use in mathematics:
if E Is anon-empty, finite set of non-negative integers, then E has
& largest element. For easier reference, let us denote by max E
the non-negative integer which is the largest element of the non-empty,
finite set E of non-negative integers (we leave the symbol max E
undefined if E fails to satisfy the conditions just stated). Through-
out mathematics, an integer x identified as x = max B (where E
is known to satisfy the conditions described above) is considered as
well defined.  Assume, in addition, that E itself is given as the set
of all those non-negative integers for which a given computable {that
is, general recursive) function f(x) has the value zero (in symbols:
E = l\x{f(x) = O} , ), where we know that the equation f(x) = 0 has
at least one and at most a finite number of zeros., Then we are given
an algorithm to compute f(x), for each non-negative integer x, and
hence to determine effectively whether or not x is an element of the
set E. Under these conditions, the set E would be considered,
under current mathematical standards, as exceptionally well defined,

* The results reported in this paper were obtained, in pare, by research supported
by the U.S. Army Research Office (Durham) under Contract DA-33-019-CRD-2114 and
grant DA-ARO(D)-31-124-G53 to the Chio State University Research Foundation, and in
part by the Battelle Memorial Instituze.

** Visiting professor at the Center for Advanced Studies, Wesleyan Universicy,
Middletown, Connecticut, during the Spring 1962 semester.
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76 MATHEMATICAL THEORY OF AUTOMATA

and the integer max E would appear as well-defined too.

In a recent note, 1 the writer gave very simple examples of non-
computable functions, using consiructions which involve only integers
given in the form max E; in addition, the sets E occurring in the
constructions were exceptionally well defined. In this paper some
further comments will be presented slong these lines. Let us note
that our main objective is to observe the phenomenon of non-computa-
bility in its simplest form, so that we can use the insight we achieve
to see better what tasks we can delegate to computers. Actually, the
comments to be presented here originated with the writer's studies
relating to the optimal design of automatic systems, and specifically
with efforts to use computers to the limit of their capabilities for this
purpose.

II. COMMENTS ON TERMINCLOGY

We shall use as illustration the logical game called the "Busy
Beaver " game in reference 1, merely recalling details needed here.
We operate with Turing machines with the alphabet 0, 1 and a poten-
tially both-ways infinite tape, in the sense of Kleene. 2 To explain
certain unessential but quite convenient modifications of Kleene's
terminology, we consider a particular instance of such a Turing
machine (Fig. 1). In Fig. 1, Cl’ C2, Cgq stand for card 1, card 2, card

3, respectively, where we use card

instead of state (or internal config-
C1 C2 C3 uration); experience shows that
internal configuration, for example,
0 102 0 111 0 112 may discourage mathematicians
unfamiliar with computers, Cn
1 113 1102 1100 e e -
each card, the first column, from
. the left, is the alphabet column.
Figure 1

The next column is the overprint by
column. The nexti column shows
the shift instruction, where 0 is the code for left shift, and 1 is
the code for right shift. The rightmost column shows the subscript
of the next card called after the shift, where a 0 is the code for Stop.
We deviate from Kleene by not zllowing a center shift (no shift at all);
this is irrelevant, yet quite convenient for certain purposes. Other-
wise, we follow Kleene's definitions; in particular, we adopt his con-
cept of a function computed by a Turing machine (of the format just
described).
The particular 3-card Turing machine shown above is quite re-
markable in a way; indeed, it is a current world's champion in the

Busy Beaver 3-card classification {see reference 1 for further details).

Competition in the 3-card classification of the Busy Beaver game
{briefly, the BB-3 contest) is governed by the following rules:
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i) The contestant writes his own 3 cards, conforming to the
format prescribed above.

ii} He then submits his 3-card machine M, as well as a positive
integer s (the shift-number) to a gualified representative of the Inter-
national Busy Beaver Club.

Thus an entry in the BB-3 contest is a pair (M, s), where M is
a 3-card machine and s is a positive integer. The umpire first
checks whether the entry (M, s) is valid. To judge this, he starts the
entry (M, s) with its card C; on a potentially both-ways infinite all-
zero tape (that is, all the squares of the tape contain zeros). He then
operates M, persisting through not more than s shifts. For the
entry (M, s) to be valid, M must stop after exactly s shifts (the
reason for requiring submission of the shift-number s is that it is
sometimes quite hard to see whether a 3-card machine M will ever
stop if started with card 1 on an ali-zero tape). If the entry (M, s)
is found valid, then the number of 1-s on the tape (at the time when
M stops) is the score o(M, s} of the entry (M, s). For example, if
the reader tests the 3-card machine shown above, he will find that it
is a valid BB-3 entry with shifi-number s = 13 and score 6 (see
reference 1). In fact, this particular entry is one of several known
6-scorers in the BB-3 contest, and a current BB-3 champion, since
no entry has been presented yet with a score exceeding 6.

Cf course, for each positive integer n, the BB-n contest is
defined in exactly the same manner. For each positive integer n,
let Z{n) be the maximum possible score in the BB-n contest. It is
shown in reference 1 that T(n) is an exceptionally well-defined posi-
tive integer (in the sense of Section 1). For each positive integer n,
let S(n) be the maximum possible shift-number s that may occur
in a valid BB-n entry (see above). It is shown in reference 1 that,
for every n, S{n) is an exceptionally well-defined positive integer.

It is trivial that Z(1) = 1, S(1) = 1. It is quite an interesting
problem to determine £(2); with considerable help from the IBM
7090 {and considerable work on a computer program) it was found
that Z(2) = 4; but S(2) is yet unknown. As regards E(3), the
above 3-card machine shows that Z(3)> 6 and S(3) > 13, but the
precise values of I(3), S(3) are unknown.* As regards ZL(3), the
ductory seminars, the determination of Z(3) and S(3) was attempted
in terms of computer programs which became quite elaborate, with-
out any definitive results. Dr. C.Y. Lee of the Bell Telephone Lab-
oratories contributed the observation that £(100) is greater than 10
raised to the 10 raised to the 10 raised to 50, 000, showing that while
it is quite hard to reach a respectable score for low card numbers,

* Since this was written, the conjectures 2(3) = 6, S(3) = 21 were confirmed by
Mr. Shen Lin who continued the writer’s efforts to find further behavior patterns to iden-
tify run-aways. This work will appear in the Bell System Technical Journal; it con-
stitutes part of the doctoral thesis of Mr. Lin, a student of the writer.
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far'ltastic scores may be expected if one considers larger but still

quite moderate card numbers. In any case, even thoxjdh skilled
mathematicians and experienced programrmers attempic:ed to evaluate
Z(3) and S(3), there is no evidence ‘hat any presently known anpj“c:ach
will yield the answer, even if we avail ourselves of high-speed ‘com— h
p}lters and elaborate programs. As regards L(4), S(4), the situa-
tion seems to be entirely hopeless at present.

II1,

Motivated by these circumstances, the writer found that Z{n}

S(n) (as functions of n) are in fact non-computable (not genersl recur-

sive); the proof turned out to be surprisingly primitive.

o However,
is re:sult' does not preclude the possibility of discovering algorithms
that will yield the values of I(n), S{n) for particular, individual

values of n; in fact, as noted above, we do know that L(2) = 4
deed, some rather puzzling results in
available.

In-
; this direction are readily
Let us first note the inequalities

£(n) <S(n) <(r + 1) £(5n) - o= (50

n-
Let us now consi i siti i

. » nsider a flxe;i positive integer n. Then I(n)

is an exceptionally well~defined (finite) positive integer, andthere exists

at leasgt one n-~card machine Mp with the score I(n)

S : ; Now, denocte
by M’ the 1-card machine of Fig. 2. Next, denote by MY the (n+1)
noy o

card machine represented by M* M, (see Kleene“ for

C] notations). Keeping n fixed, letus put (onto the originaily
all-zero tape) x +1 consecutive l-s to represent, in

0 010 .Lhe sense of Kleene? znd a1§o of Davis, 3 the non-negative

! oot %nteg:er X, andletus start M; under the rightmost 1 (with

1‘fs flrst card). Then, proceeding to the left, M* will
first overprint the 1-s with zeros; then it shiftsnto the

which hold for every positive integer !

Figute 2 right, and M, takes over. Since we know t ir
; er hat starting
rom an all-zero tape, Mn will eventually stop printing
. Z(n) 1-s on the tape, it follows that '
the sense of Davis, a f i (x} which }
oy ae ot DA ,th unction br}{X} w%ncn has the constant value
S g s. e reference to Davis, let us note that he operates
wi uring machines which differ slightly from ours (they aréL sets

n 3
of‘ quadruples, " while ours are sets of " quintuples ™), but thig i
evidently irrelevant. ) ; °

Mr'l computes, in

Thus we see that T(n) is computable for each individual n
as the value of a constant function bpix}). We proceed presently ’Eo

point out a consequence of the inequalities {1): namely, that S(n) is
also computable for each individual positive integer n. Let us fix -
n. We consider then Z(5n), ' y

for this fixed value of n. As we just
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observed, ={5n) is computable {(by the machine M:gn)' The compu-
tation of S(n), for the fixed positive integer n, may be outlined as
follows. Let Kn be the class of the n-card machines. The number
of these machines is finite; in fact there are [4(n+ 1]2n

such machines which can be readily enumerated in a systematic, ef-
feciive way. Let M e Kp. We start M, with its card 1, on an all-
zero tape and persist in operating it through not more than

L_= (a+1)Z(5n)- o= (5m) (2)

shifts. Now the inequalities (1) mean (since M e K) that if M stops
at all, then it stops after a certain number s <L,  of shifts, where

L, is defined in Eq.(2). Hence, if M fails to stop within L, shifts,
it is identified as a "run-away." If M does stop within a certain
number s <L, of shifts, then we note s; and in this manner we
obtain a non-empty, finite set of positive integers consisting of the
shift-numbers s of the stoppers in the class K ; S(n) is then simply
the largest number in this set. This intuitive descriptioncan be readily
translated into & program, as the experienced reader will easily see;
in fact, we readily obtain the result that there exists a Turing machine
that computes a constant function c,(x) whose value is S(n). Actually
the argument just sketched amounts to the fact that (in view of the
inequalities (1)) S(n) is computable from I(n) and 5n, in the sense
of Kleene. 2

Iv.

As stressed by authors in the field of computable functions, the
formsal concept of computability (see Davis, reference 3 page 10, def-
inition 2.5, and Kleene, reference 2, p.360) is meant to capture the
meaning of the vague, intuitive concept of "effective calculability. "
Now it is clear from the history of mathematics (as well as of the
sciences in general) that perfect correspondence between an intuitive
concept and its formal counterpart cannot be expected generally. For
example, the nowhere differentiable continuous function of Welerstrass
caused great surprise among mathematicians, for the evident reason
that this sort of phenomenon was not anticipated in the intuitive con-
cept of cbvﬁtinuity.

Let us now consider the relationship between the formal con-
cept of computability and the intuitive concept of effective calculability,
in the light of the comments above on IL(n) and S(n). As pointed
out earlier in this paper, sustained efforts were made by skilled
mathematicians and skilled programmers to calculate Z(3) and S(3)
effectively. It was found immediately that the heart of the issue is
catching the 3-card run-away machines (never-stoppers). A first
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evident thought was that a run-away will somehow go into a "loop, *
somehow exhibit an oscillatory or periodic behavior.
one of the programs for calculating Z(3), about a dozen routines
were included for the purpose of looking for certain types of behavior
which (if observed) implied that the particular Turing machine proc-
essed was a run-away. In this manner, out of an initial number of
about 17, 000, 000 3-card machines, only a few thousand were still
undecided. However, the writer feels that ali mathematicians and
programmers who tried to calculate I(3) or S(3) agree that there
is no evidence whatever that ©{(3) or S(3) will ever be ¢ effectively
calculated. ™ As regards £(4), £(5},... , {100},
range of reasonable integers n,
this time.

Actually, in

to remain in the
the situation is entirely hopeless at

Accordingly, we seem to be in the presence of a conflict between
an intuitive concept (effective calculability} and its formal counterpart
(computability). As pointed out earlier, perfect correspondence can-
not be expected in general; furthermore,
shows, such conflicts may be extreme
structively.
relevant.

as the history of mathematics
ly fruitful if treated con-
In the present contexi, the following comments may be

As pointed out above, the {(formal) non-computability of the
function Z{(n}), for example, is directly traceable to the definition of
Z(n) for each individual n as the largest element of a non-empty,
finite set of non-negative integers (where the set involved is, in fact,
exceptionally well defined). Now, if one phrases this type of definition
in terms of logical formulas, it is seen that we are faced with logical
expressions referred to as of type VEY, in view of the order in
which the universal and existential quantifiers V , @ appear. It is
well known that logical expressions of this type correspond, generally,
to unsolvable decision problems. Hence, if I{n,), for example, is
computable for some particular Ny, then one would expect that the
reason should be some particular feature exhibited by machines with Ng
cards, rather than a general theorem applicable to every n. This
expectation is perhaps strengthened by the observation that in the
extensive researches on solvable cases of decision problems of the
type VEY , the issue is the identi ication of special features which make
a particular decision problem of this type solvable. ¥ Let us alsc
recall the halting problem (see DavisB), not only is this problerm un-
decidable for all Turing machines, but, as shown by Davis, there
exists an individual Turing machine whose halting problem is undecid-
able. Hence one would rather expect that in a similar manner
may exist an individual positive integer n
are non-computable.

there
o for which Z{ng), S{n,)

vV

In any case, the writer feels that in view of the efforts expended
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on the calculation of Z(3), for instance, it is rather unrealistic to
accerpt the mere existence of a Turing machine that compute.s 2(3)‘ a.s
evidence that L(3) can be "effectively calculated. " leus realistic
attitude is based, in part, on the writer's experiences in actual com-
puter work (involving large and logically intricate programs concerned
with the optimal design of automatic systems). In fact, he feels that,
in his work with such programs, he profited greatly from the 'efforts
expended (along with others) to subdue somehow the exasperatingly
elusive BB-3 problem, even though this problem seems to be merely
a nice exercise in a course for beginners. ‘ _

A very simple and very direct answer to the questions .ra.u.sed
here may very well be that the writer misinterpreted the definition
of "computability " as stated, for example, by Kleene (reference 2, '
p. 360) or Davis (reference 3, page 10, definition 2.5). In a way, this
woulc be a very gratifying outcome. Indeed, ‘che. B]?—n problem would
appear then as an instance of non-computability in its pe.rhjaps most
primitive form, and hence as a potential source of new 1n51ghtsl re-
garding the extent to which computers can relieve the human mm.d of
monctonous tasks, setting it free to exercise its powers on the high-
= le‘;ili.onclusion, it should be noted that a detailed ( and technically
quite involved) study of the issues raised above i§ in progress. jI‘he
purpose of the informal presentation in this note is to ca.ll atte.ntlon
to certain questions which seem to deserve further consideration.
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